File size: 8,974 Bytes
8234608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import datetime
import logging
import math
import random
import time
import torch
import platform
from os import path as osp
import warnings

from basicsr.data import build_dataloader, build_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import build_model
from basicsr.utils import (
    MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger,
    init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed
)
from basicsr.utils.dist_util import get_dist_info, init_dist
from basicsr.utils.options import dict2str, parse

# ----------- DEVICE SELECTION ----------
def select_device(prefer_coreml=True):
    if torch.backends.mps.is_available() and prefer_coreml and platform.system() == "Darwin":
        print("BasicSR: Using CoreML backend (MPS).")
        return torch.device("mps")
    elif torch.cuda.is_available():
        print("BasicSR: Using CUDA backend.")
        return torch.device("cuda")
    else:
        print("BasicSR: Using CPU backend.")
        return torch.device("cpu")

DEVICE = select_device(prefer_coreml=True)

# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
warnings.filterwarnings("ignore", category=UserWarning)

def parse_options(root_path, is_train=True):
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
    parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = parse(args.opt, root_path, is_train=is_train)

    # distributed settings
    if args.launcher == 'none' or DEVICE.type != 'cuda':
        opt['dist'] = False
        print('Distributed training disabled.', flush=True)
    else:
        opt['dist'] = True
        if args.launcher == 'slurm' and 'dist_params' in opt:
            init_dist(args.launcher, **opt['dist_params'])
        else:
            init_dist(args.launcher)

    opt['rank'], opt['world_size'] = get_dist_info()

    # random seed
    seed = opt.get('manual_seed')
    if seed is None:
        seed = random.randint(1, 10000)
        opt['manual_seed'] = seed
    set_random_seed(seed + opt['rank'])

    return opt

def init_loggers(opt):
    log_file = osp.join(opt['path']['log'], f"train_{opt['name']}.log")
    logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
    logger.info(get_env_info())
    logger.info(dict2str(opt))

    if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None):
        assert opt['logger'].get('use_tb_logger') is True
        init_wandb_logger(opt)

    tb_logger = None
    if opt['logger'].get('use_tb_logger'):
        tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
    return logger, tb_logger

def create_train_val_dataloader(opt, logger):
    train_loader, val_loader = None, None
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = build_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
            train_loader = build_dataloader(train_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=train_sampler, seed=opt['manual_seed'])
            num_iter_per_epoch = math.ceil(len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / num_iter_per_epoch)
            logger.info(f'Training stats:\n\tTrain images: {len(train_set)}\n\tEnlarge ratio: {dataset_enlarge_ratio}\n\tBatch/GPU: {dataset_opt["batch_size_per_gpu"]}\n\tGPUs: {opt["world_size"]}\n\tIters/epoch: {num_iter_per_epoch}\n\tTotal epochs: {total_epochs}, Iters: {total_iters}')

        elif phase == 'val':
            val_set = build_dataset(dataset_opt)
            val_loader = build_dataloader(val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
            logger.info(f'Validation items in {dataset_opt["name"]}: {len(val_set)}')
        else:
            raise ValueError(f'Dataset phase {phase} not recognized.')

    return train_loader, train_sampler, val_loader, total_epochs, total_iters

def train_pipeline(root_path):
    opt = parse_options(root_path, is_train=True)

    if DEVICE.type == 'cuda':
        torch.backends.cudnn.benchmark = True

    if opt['path'].get('resume_state'):
        resume_state = torch.load(opt['path']['resume_state'], map_location=DEVICE)
    else:
        resume_state = None

    if resume_state is None:
        make_exp_dirs(opt)
        if opt['logger'].get('use_tb_logger') and opt['rank'] == 0:
            mkdir_and_rename(osp.join('tb_logger', opt['name']))

    logger, tb_logger = init_loggers(opt)
    train_loader, train_sampler, val_loader, total_epochs, total_iters = create_train_val_dataloader(opt, logger)

    if resume_state:
        check_resume(opt, resume_state['iter'])
        model = build_model(opt).to(DEVICE)
        model.resume_training(resume_state)
        logger.info(f"Resuming from epoch {resume_state['epoch']}, iter {resume_state['iter']}")
        start_epoch = resume_state['epoch']
        current_iter = resume_state['iter']
    else:
        model = build_model(opt).to(DEVICE)
        start_epoch = 0
        current_iter = 0

    msg_logger = MessageLogger(opt, current_iter, tb_logger)

    prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
    if prefetch_mode is None or prefetch_mode == 'cpu' or DEVICE.type in ['cpu', 'mps']:
        if prefetch_mode == 'cuda' and DEVICE.type == 'mps':
            logger.warning("CUDA prefetch requested but MPS (CoreML) is in use. Falling back to CPU prefetch.")
        prefetcher = CPUPrefetcher(train_loader)
    elif prefetch_mode == 'cuda':
        if DEVICE.type != 'cuda':
            logger.warning("CUDA prefetch requested but CUDA unavailable. Using CPU prefetch.")
            prefetcher = CPUPrefetcher(train_loader)
        else:
            if opt['datasets']['train'].get('pin_memory') is not True:
                raise ValueError('Set pin_memory=True for CUDAPrefetcher.')
            prefetcher = CUDAPrefetcher(train_loader, opt)
            logger.info(f'Using CUDA prefetcher')
    else:
        raise ValueError(f"Invalid prefetch_mode: {prefetch_mode}. Supported: 'cpu', 'cuda', None")

    logger.info(f'Start training at epoch {start_epoch}, iter {current_iter + 1}')
    start_time = time.time()
    data_time, iter_time = time.time(), time.time()

    for epoch in range(start_epoch, total_epochs + 1):
        train_sampler.set_epoch(epoch)
        prefetcher.reset()
        train_data = prefetcher.next()

        while train_data is not None:
            data_time = time.time() - data_time
            current_iter += 1
            if current_iter > total_iters:
                break

            model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
            model.feed_data(train_data)
            model.optimize_parameters(current_iter)

            iter_time = time.time() - iter_time
            if current_iter % opt['logger']['print_freq'] == 0:
                log_vars = {'epoch': epoch, 'iter': current_iter}
                log_vars.update({'lrs': model.get_current_learning_rate()})
                log_vars.update({'time': iter_time, 'data_time': data_time})
                log_vars.update(model.get_current_log())
                msg_logger(log_vars)

            if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
                logger.info('Saving model and training state.')
                model.save(epoch, current_iter)

            if opt.get('val') and opt['datasets'].get('val') and (current_iter % opt['val']['val_freq'] == 0):
                model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])

            data_time = time.time()
            iter_time = time.time()
            train_data = prefetcher.next()

    consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
    logger.info(f'Training complete. Time: {consumed_time}')
    logger.info('Saving latest model.')
    model.save(epoch=-1, current_iter=-1)

    if opt.get('val') and opt['datasets'].get('val'):
        model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
    if tb_logger:
        tb_logger.close()

if __name__ == '__main__':
    root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
    train_pipeline(root_path)