File size: 8,974 Bytes
8234608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import argparse
import datetime
import logging
import math
import random
import time
import torch
import platform
from os import path as osp
import warnings
from basicsr.data import build_dataloader, build_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import build_model
from basicsr.utils import (
MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger,
init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed
)
from basicsr.utils.dist_util import get_dist_info, init_dist
from basicsr.utils.options import dict2str, parse
# ----------- DEVICE SELECTION ----------
def select_device(prefer_coreml=True):
if torch.backends.mps.is_available() and prefer_coreml and platform.system() == "Darwin":
print("BasicSR: Using CoreML backend (MPS).")
return torch.device("mps")
elif torch.cuda.is_available():
print("BasicSR: Using CUDA backend.")
return torch.device("cuda")
else:
print("BasicSR: Using CPU backend.")
return torch.device("cpu")
DEVICE = select_device(prefer_coreml=True)
# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
warnings.filterwarnings("ignore", category=UserWarning)
def parse_options(root_path, is_train=True):
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = parse(args.opt, root_path, is_train=is_train)
# distributed settings
if args.launcher == 'none' or DEVICE.type != 'cuda':
opt['dist'] = False
print('Distributed training disabled.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
set_random_seed(seed + opt['rank'])
return opt
def init_loggers(opt):
log_file = osp.join(opt['path']['log'], f"train_{opt['name']}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None):
assert opt['logger'].get('use_tb_logger') is True
init_wandb_logger(opt)
tb_logger = None
if opt['logger'].get('use_tb_logger'):
tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
return logger, tb_logger
def create_train_val_dataloader(opt, logger):
train_loader, val_loader = None, None
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
train_set = build_dataset(dataset_opt)
train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
train_loader = build_dataloader(train_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=train_sampler, seed=opt['manual_seed'])
num_iter_per_epoch = math.ceil(len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
total_iters = int(opt['train']['total_iter'])
total_epochs = math.ceil(total_iters / num_iter_per_epoch)
logger.info(f'Training stats:\n\tTrain images: {len(train_set)}\n\tEnlarge ratio: {dataset_enlarge_ratio}\n\tBatch/GPU: {dataset_opt["batch_size_per_gpu"]}\n\tGPUs: {opt["world_size"]}\n\tIters/epoch: {num_iter_per_epoch}\n\tTotal epochs: {total_epochs}, Iters: {total_iters}')
elif phase == 'val':
val_set = build_dataset(dataset_opt)
val_loader = build_dataloader(val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
logger.info(f'Validation items in {dataset_opt["name"]}: {len(val_set)}')
else:
raise ValueError(f'Dataset phase {phase} not recognized.')
return train_loader, train_sampler, val_loader, total_epochs, total_iters
def train_pipeline(root_path):
opt = parse_options(root_path, is_train=True)
if DEVICE.type == 'cuda':
torch.backends.cudnn.benchmark = True
if opt['path'].get('resume_state'):
resume_state = torch.load(opt['path']['resume_state'], map_location=DEVICE)
else:
resume_state = None
if resume_state is None:
make_exp_dirs(opt)
if opt['logger'].get('use_tb_logger') and opt['rank'] == 0:
mkdir_and_rename(osp.join('tb_logger', opt['name']))
logger, tb_logger = init_loggers(opt)
train_loader, train_sampler, val_loader, total_epochs, total_iters = create_train_val_dataloader(opt, logger)
if resume_state:
check_resume(opt, resume_state['iter'])
model = build_model(opt).to(DEVICE)
model.resume_training(resume_state)
logger.info(f"Resuming from epoch {resume_state['epoch']}, iter {resume_state['iter']}")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
else:
model = build_model(opt).to(DEVICE)
start_epoch = 0
current_iter = 0
msg_logger = MessageLogger(opt, current_iter, tb_logger)
prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
if prefetch_mode is None or prefetch_mode == 'cpu' or DEVICE.type in ['cpu', 'mps']:
if prefetch_mode == 'cuda' and DEVICE.type == 'mps':
logger.warning("CUDA prefetch requested but MPS (CoreML) is in use. Falling back to CPU prefetch.")
prefetcher = CPUPrefetcher(train_loader)
elif prefetch_mode == 'cuda':
if DEVICE.type != 'cuda':
logger.warning("CUDA prefetch requested but CUDA unavailable. Using CPU prefetch.")
prefetcher = CPUPrefetcher(train_loader)
else:
if opt['datasets']['train'].get('pin_memory') is not True:
raise ValueError('Set pin_memory=True for CUDAPrefetcher.')
prefetcher = CUDAPrefetcher(train_loader, opt)
logger.info(f'Using CUDA prefetcher')
else:
raise ValueError(f"Invalid prefetch_mode: {prefetch_mode}. Supported: 'cpu', 'cuda', None")
logger.info(f'Start training at epoch {start_epoch}, iter {current_iter + 1}')
start_time = time.time()
data_time, iter_time = time.time(), time.time()
for epoch in range(start_epoch, total_epochs + 1):
train_sampler.set_epoch(epoch)
prefetcher.reset()
train_data = prefetcher.next()
while train_data is not None:
data_time = time.time() - data_time
current_iter += 1
if current_iter > total_iters:
break
model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
model.feed_data(train_data)
model.optimize_parameters(current_iter)
iter_time = time.time() - iter_time
if current_iter % opt['logger']['print_freq'] == 0:
log_vars = {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_time, 'data_time': data_time})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving model and training state.')
model.save(epoch, current_iter)
if opt.get('val') and opt['datasets'].get('val') and (current_iter % opt['val']['val_freq'] == 0):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
data_time = time.time()
iter_time = time.time()
train_data = prefetcher.next()
consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
logger.info(f'Training complete. Time: {consumed_time}')
logger.info('Saving latest model.')
model.save(epoch=-1, current_iter=-1)
if opt.get('val') and opt['datasets'].get('val'):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
if tb_logger:
tb_logger.close()
if __name__ == '__main__':
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
train_pipeline(root_path) |