File size: 22,110 Bytes
8234608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import cv2
import onnxruntime as rt
import sys
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
import requests
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
from PIL import Image
import numpy as np
import time
from codeformer_wrapper import enhance_image, enhance_image_memory
import tempfile

gc = __import__('gc')

# Preload NVIDIA DLLs if Windows
if sys.platform in ("win32", "win64"):
    if hasattr(os, "add_dll_directory"):
        try:
            os.add_dll_directory(r"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\bin")
            os.add_dll_directory(r"C:\Program Files\NVIDIA\CUDNN\v9.4\bin\12.6")
        except Exception as e:
            print(f"[INFO] Failed to add CUDA or CUDNN DLL directory: {e}")
            print("[INFO] This error can be ignored if running in CPU mode. Otherwise, make sure the paths are correct.")

    if hasattr(rt, "preload_dlls"):
        rt.preload_dlls()

class RefacerMode(Enum):
    CPU, CUDA, COREML, TENSORRT = range(1, 5)

class Refacer:
    def __init__(self, force_cpu=False, colab_performance=False):
        self.disable_similarity = False
        self.multiple_faces_mode = False
        self.first_face = False
        self.force_cpu = force_cpu
        self.colab_performance = colab_performance
        self.use_num_cpus = mp.cpu_count()
        self.__check_encoders()
        self.__check_providers()
        self.total_mem = psutil.virtual_memory().total
        self.__init_apps()
        
    def _partial_face_blend(self, original_frame, swapped_frame, face):
        h_frame, w_frame = original_frame.shape[:2]
    
        x1, y1, x2, y2 = map(int, face.bbox)
        x1 = max(0, min(x1, w_frame-1))
        y1 = max(0, min(y1, h_frame-1))
        x2 = max(0, min(x2, w_frame))
        y2 = max(0, min(y2, h_frame))
    
        if x2 <= x1 or y2 <= y1:
            print(f"Invalid bbox: {x1},{y1},{x2},{y2}")
            return swapped_frame
    
        w = x2 - x1
        h = y2 - y1
        cutoff = int(h * (1.0 - self.blend_height_ratio))
    
        swap_crop = swapped_frame[y1:y2, x1:x2].copy()
        orig_crop = original_frame[y1:y2, x1:x2].copy()
    
        mask = np.ones((h, w, 3), dtype=np.float32)
        transition = 40
    
        if cutoff < h:
            blend_start = max(cutoff - transition // 2, 0)
            blend_end = min(cutoff + transition // 2, h)
    
            if blend_end > blend_start:
                alpha = np.linspace(1.0, 0.0, blend_end - blend_start)[:, np.newaxis, np.newaxis]
                mask[blend_start:blend_end, :, :] = alpha
            mask[blend_end:, :, :] = 0.0
    
        blended_crop = (swap_crop.astype(np.float32) * mask + orig_crop.astype(np.float32) * (1.0 - mask)).astype(np.uint8)
    
        blended_frame = swapped_frame.copy()
        blended_frame[y1:y2, x1:x2] = blended_crop
    
        return blended_frame
    

    def __download_with_progress(self, url, output_path):
        response = requests.get(url, stream=True)
        total_size = int(response.headers.get('content-length', 0))
        block_size = 1024
        t = tqdm(total=total_size, unit='iB', unit_scale=True, desc=f"Downloading {os.path.basename(output_path)}")

        with open(output_path, 'wb') as f:
            for data in response.iter_content(block_size):
                t.update(len(data))
                f.write(data)
        t.close()

        if total_size != 0 and t.n != total_size:
            raise Exception("ERROR, something went wrong downloading the model!")

    def __check_providers(self):
        available_providers = rt.get_available_providers()

        if self.force_cpu:
            self.providers = ['CPUExecutionProvider']
        else:
            # Prefer faster execution providers in order
            self.providers = []
            for p in ['CoreMLExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']:
                if p in available_providers:
                    self.providers.append(p)

        rt.set_default_logger_severity(4)
        self.sess_options = rt.SessionOptions()
        self.sess_options.execution_mode = rt.ExecutionMode.ORT_PARALLEL
        self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL

        test_model = os.path.expanduser("~/.insightface/models/buffalo_l/det_10g.onnx")
        try:
            test_session = rt.InferenceSession(test_model, self.sess_options, providers=self.providers)
            active_provider = test_session.get_providers()[0]
        except Exception as e:
            print(f"[ERROR] Failed to create test session: {e}")
            active_provider = 'CPUExecutionProvider'

        if active_provider == 'CUDAExecutionProvider':
            self.mode = RefacerMode.CUDA
            self.use_num_cpus = 2
            self.sess_options.intra_op_num_threads = 1
        elif active_provider == 'CoreMLExecutionProvider':
            self.mode = RefacerMode.COREML
            self.use_num_cpus = max(mp.cpu_count() - 1, 1)
            self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
        elif self.colab_performance:
            self.mode = RefacerMode.TENSORRT
            self.use_num_cpus = max(mp.cpu_count() - 1, 1)
            self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
        else:
            self.mode = RefacerMode.CPU
            self.use_num_cpus = max(mp.cpu_count() - 1, 1)
            self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)

        print(f"Available providers: {available_providers}")
        print(f"Using providers: {self.providers}")
        print(f"Active provider: {active_provider}")
        print(f"Mode: {self.mode}")

    def __init_apps(self):
        assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')

        model_path = os.path.join(assets_dir, 'det_10g.onnx')
        sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
        print(f"Face Detector providers: {sess_face.get_providers()}")
        self.face_detector = SCRFD(model_path, sess_face)
        self.face_detector.prepare(0, input_size=(640, 640))

        model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
        sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
        print(f"Face Recognizer providers: {sess_rec.get_providers()}")
        self.rec_app = ArcFaceONNX(model_path, sess_rec)
        self.rec_app.prepare(0)

        model_dir = os.path.join('weights', 'inswapper')
        os.makedirs(model_dir, exist_ok=True)
        model_path = os.path.join(model_dir, 'inswapper_128.onnx')

        if not os.path.exists(model_path):
            print(f"Model {model_path} not found. Downloading from HuggingFace...")
            url = "https://huggingface.co/ezioruan/inswapper_128.onnx/resolve/main/inswapper_128.onnx"
            try:
                self.__download_with_progress(url, model_path)
                print(f"Downloaded {model_path}")
            except Exception as e:
                raise RuntimeError(f"Failed to download {model_path}. Error: {e}")

        sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
        print(f"Face Swapper providers: {sess_swap.get_providers()}")
        self.face_swapper = INSwapper(model_path, sess_swap)

    def prepare_faces(self, faces, disable_similarity=False, multiple_faces_mode=False):
        self.replacement_faces = []
        self.disable_similarity = disable_similarity
        self.multiple_faces_mode = multiple_faces_mode

        for face in faces:
            if "destination" not in face or face["destination"] is None:
                print("Skipping face config: No destination face provided.")
                continue

            _faces = self.__get_faces(face['destination'], max_num=1)
            if len(_faces) < 1:
                raise Exception('No face detected on "Destination face" image')

            if multiple_faces_mode:
                self.replacement_faces.append((None, _faces[0], 0.0))
            else:
                if "origin" in face and face["origin"] is not None and not disable_similarity:
                    face_threshold = face['threshold']
                    bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
                    if len(kpss1) < 1:
                        raise Exception('No face detected on "Face to replace" image')
                    feat_original = self.rec_app.get(face['origin'], kpss1[0])
                else:
                    face_threshold = 0
                    self.first_face = True
                    feat_original = None

                self.replacement_faces.append((feat_original, _faces[0], face_threshold))

    def __get_faces(self, frame, max_num=0):
        bboxes, kpss = self.face_detector.detect(frame, max_num=max_num, metric='default')
        if bboxes.shape[0] == 0:
            return []
        ret = []
        for i in range(bboxes.shape[0]):
            bbox = bboxes[i, 0:4]
            det_score = bboxes[i, 4]
            kps = kpss[i] if kpss is not None else None
            face = Face(bbox=bbox, kps=kps, det_score=det_score)
            face.embedding = self.rec_app.get(frame, kps)
            ret.append(face)
        return ret

    def process_first_face(self, frame):
        faces = self.__get_faces(frame, max_num=0)
        if not faces:
            return frame
    
        if self.disable_similarity:
            for face in faces:
                swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
                if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
                    self.blend_height_ratio = self.partial_reface_ratio
                    frame = self._partial_face_blend(frame, swapped, face)
                else:
                    frame = swapped
        return frame

    def process_faces(self, frame):
        faces = self.__get_faces(frame, max_num=0)
        if not faces:
            return frame
 
        faces = sorted(faces, key=lambda face: face.bbox[0])
 
        if self.multiple_faces_mode:
            for idx, face in enumerate(faces):
                if idx >= len(self.replacement_faces):
                    break
                swapped = self.face_swapper.get(frame, face, self.replacement_faces[idx][1], paste_back=True)
                if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
                    self.blend_height_ratio = self.partial_reface_ratio
                    frame = self._partial_face_blend(frame, swapped, face)
                else:
                    frame = swapped
        elif self.disable_similarity:
            for face in faces:
                swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
                if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
                    self.blend_height_ratio = self.partial_reface_ratio
                    frame = self._partial_face_blend(frame, swapped, face)
                else:
                    frame = swapped
        else:
            for rep_face in self.replacement_faces:
                for i in range(len(faces) - 1, -1, -1):
                    sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
                    if sim >= rep_face[2]:
                        swapped = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
                        if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
                            self.blend_height_ratio = self.partial_reface_ratio
                            frame = self._partial_face_blend(frame, swapped, faces[i])
                        else:
                            frame = swapped
                        del faces[i]
                        break
        return frame

    def reface_group(self, faces, frames, output):
        with ThreadPoolExecutor(max_workers=self.use_num_cpus) as executor:
            if self.first_face:
                results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames), desc="Processing frames"))
            else:
                results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames), desc="Processing frames"))
            for result in results:
                output.write(result)

    def __check_video_has_audio(self, video_path):
        self.video_has_audio = False
        probe = ffmpeg.probe(video_path)
        audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
        if audio_stream is not None:
            self.video_has_audio = True

    def reface(self, video_path, faces, preview=False, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
        original_name = osp.splitext(osp.basename(video_path))[0]
        timestamp = str(int(time.time()))
        filename = f"{original_name}_preview.mp4" if preview else f"{original_name}_{timestamp}.mp4"
    
        self.__check_video_has_audio(video_path)
    
        if preview:
            os.makedirs("output/preview", exist_ok=True)
            output_video_path = os.path.join('output', 'preview', filename)
        else:
            os.makedirs("output", exist_ok=True)
            output_video_path = os.path.join('output', filename)
    
        self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
        self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
        self.partial_reface_ratio = partial_reface_ratio
    
        cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
    
        frames = []
        frame_index = 0
        skip_rate = 10 if preview else 1
    
        with tqdm(total=total_frames, desc="Extracting frames") as pbar:
            while cap.isOpened():
                flag, frame = cap.read()
                if not flag:
                    break
                if frame_index % skip_rate == 0:
                    frames.append(frame)
                    if len(frames) > 300:
                        self.reface_group(faces, frames, output)
                        frames = []
                        gc.collect()
                frame_index += 1
                pbar.update()
    
        cap.release()
        if frames:
            self.reface_group(faces, frames, output)
        output.release()
    
        converted_path = self.__convert_video(video_path, output_video_path, preview=preview)
    
        if video_path.lower().endswith(".gif"):
            if preview:
                gif_output_path = os.path.join("output", "preview", os.path.basename(converted_path).replace(".mp4", ".gif"))
            else:
                gif_output_path = os.path.join("output", "gifs", os.path.basename(converted_path).replace(".mp4", ".gif"))
    
            self.__generate_gif(converted_path, gif_output_path)
            return converted_path, gif_output_path
    
        return converted_path, None
    
   
  


    def __generate_gif(self, video_path, gif_output_path):
        os.makedirs(os.path.dirname(gif_output_path), exist_ok=True)
        print(f"Generating GIF at {gif_output_path}")
        (
            ffmpeg
            .input(video_path)
            .output(gif_output_path, vf='fps=10,scale=512:-1:flags=lanczos', loop=0)
            .overwrite_output()
            .run(quiet=True)
        )

    def __convert_video(self, video_path, output_video_path, preview=False):
        if self.video_has_audio and not preview:
            new_path = output_video_path + str(random.randint(0, 999)) + "_c.mp4"
            in1 = ffmpeg.input(output_video_path)
            in2 = ffmpeg.input(video_path)
            out = ffmpeg.output(in1.video, in2.audio, new_path, video_bitrate=self.ffmpeg_video_bitrate, vcodec=self.ffmpeg_video_encoder)
            out.run(overwrite_output=True, quiet=True)
        else:
            new_path = output_video_path
        print(f"Refaced video saved at: {os.path.abspath(new_path)}")
        return new_path

    def reface_image(self, image_path, faces, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
         self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
         self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
         self.partial_reface_ratio = partial_reface_ratio
 
         ext = osp.splitext(image_path)[1].lower()
         os.makedirs("output", exist_ok=True)
         original_name = osp.splitext(osp.basename(image_path))[0]
         timestamp = str(int(time.time()))
 
         if ext in ['.tif', '.tiff']:
             pil_img = Image.open(image_path)
             frames = []
 
             page_count = 0
             try:
                 while True:
                     pil_img.seek(page_count)
                     page_count += 1
             except EOFError:
                 pass
 
             pil_img = Image.open(image_path)
 
             with tqdm(total=page_count, desc="Processing TIFF pages") as pbar:
                 for page in range(page_count):
                     pil_img.seek(page)
                     bgr_image = cv2.cvtColor(np.array(pil_img.convert('RGB')), cv2.COLOR_RGB2BGR)
                     refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
                     enhanced_bgr = enhance_image_memory(refaced_bgr)
                     enhanced_rgb = cv2.cvtColor(enhanced_bgr, cv2.COLOR_BGR2RGB)
                     enhanced_pil = Image.fromarray(enhanced_rgb)
                     frames.append(enhanced_pil)
                     pbar.update(1)
 
             output_path = os.path.join("output", f"{original_name}_{timestamp}.tif")
             frames[0].save(output_path, save_all=True, append_images=frames[1:], compression="tiff_deflate")
             print(f"Saved multipage refaced TIFF to {output_path}")
             return output_path
 
         else:
             bgr_image = cv2.imread(image_path)
             if bgr_image is None:
                 raise ValueError("Failed to read input image")
 
             refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
             refaced_rgb = cv2.cvtColor(refaced_bgr, cv2.COLOR_BGR2RGB)
             pil_img = Image.fromarray(refaced_rgb)
             filename = f"{original_name}_{timestamp}.jpg"
             output_path = os.path.join("output", filename)
             pil_img.save(output_path, format='JPEG', quality=100, subsampling=0)
             output_path = enhance_image(output_path)
             print(f"Saved refaced image to {output_path}")
             return output_path


    def extract_faces_from_image(self, image_path, max_faces=5):
        frame = cv2.imread(image_path)
        if frame is None:
            raise ValueError("Failed to read input image for face extraction.")

        faces = self.__get_faces(frame, max_num=max_faces)
        cropped_faces = []

        for face in faces:
            x1, y1, x2, y2 = map(int, face.bbox)
            x1 = max(x1, 0)
            y1 = max(y1, 0)
            x2 = min(x2, frame.shape[1])
            y2 = min(y2, frame.shape[0])

            cropped = frame[y1:y2, x1:x2]
            pil_img = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))

            temp_file = tempfile.NamedTemporaryFile(delete=False, dir="./tmp", suffix=".png")
            pil_img.save(temp_file.name)
            cropped_faces.append(temp_file.name)

            if len(cropped_faces) >= max_faces:
                break

        return cropped_faces

    def __try_ffmpeg_encoder(self, vcodec):
        command = ['ffmpeg', '-y', '-f', 'lavfi', '-i', 'testsrc=duration=1:size=1280x720:rate=30', '-vcodec', vcodec, 'testsrc.mp4']
        try:
            subprocess.run(command, check=True, capture_output=True).stderr
        except subprocess.CalledProcessError:
            return False
        return True

    def __check_encoders(self):
        self.ffmpeg_video_encoder = 'libx264'
        self.ffmpeg_video_bitrate = '0'
        pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
        command = ['ffmpeg', '-codecs', '--list-encoders']
        commandout = subprocess.run(command, check=True, capture_output=True).stdout
        result = commandout.decode('utf-8').split('\n')
        for r in result:
            if "264" in r:
                encoders = re.search(pattern, r)
                if encoders:
                    for v_c in Refacer.VIDEO_CODECS:
                        for v_k in encoders.group(1).split(' '):
                            if v_c == v_k and self.__try_ffmpeg_encoder(v_k):
                                self.ffmpeg_video_encoder = v_k
                                self.ffmpeg_video_bitrate = Refacer.VIDEO_CODECS[v_k]
                                return

    VIDEO_CODECS = {
        'h264_videotoolbox': '0',
        'h264_nvenc': '0',
        'libx264': '0'
    }