File size: 22,110 Bytes
8234608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import cv2
import onnxruntime as rt
import sys
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
import requests
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
from PIL import Image
import numpy as np
import time
from codeformer_wrapper import enhance_image, enhance_image_memory
import tempfile
gc = __import__('gc')
# Preload NVIDIA DLLs if Windows
if sys.platform in ("win32", "win64"):
if hasattr(os, "add_dll_directory"):
try:
os.add_dll_directory(r"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\bin")
os.add_dll_directory(r"C:\Program Files\NVIDIA\CUDNN\v9.4\bin\12.6")
except Exception as e:
print(f"[INFO] Failed to add CUDA or CUDNN DLL directory: {e}")
print("[INFO] This error can be ignored if running in CPU mode. Otherwise, make sure the paths are correct.")
if hasattr(rt, "preload_dlls"):
rt.preload_dlls()
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self, force_cpu=False, colab_performance=False):
self.disable_similarity = False
self.multiple_faces_mode = False
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.use_num_cpus = mp.cpu_count()
self.__check_encoders()
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def _partial_face_blend(self, original_frame, swapped_frame, face):
h_frame, w_frame = original_frame.shape[:2]
x1, y1, x2, y2 = map(int, face.bbox)
x1 = max(0, min(x1, w_frame-1))
y1 = max(0, min(y1, h_frame-1))
x2 = max(0, min(x2, w_frame))
y2 = max(0, min(y2, h_frame))
if x2 <= x1 or y2 <= y1:
print(f"Invalid bbox: {x1},{y1},{x2},{y2}")
return swapped_frame
w = x2 - x1
h = y2 - y1
cutoff = int(h * (1.0 - self.blend_height_ratio))
swap_crop = swapped_frame[y1:y2, x1:x2].copy()
orig_crop = original_frame[y1:y2, x1:x2].copy()
mask = np.ones((h, w, 3), dtype=np.float32)
transition = 40
if cutoff < h:
blend_start = max(cutoff - transition // 2, 0)
blend_end = min(cutoff + transition // 2, h)
if blend_end > blend_start:
alpha = np.linspace(1.0, 0.0, blend_end - blend_start)[:, np.newaxis, np.newaxis]
mask[blend_start:blend_end, :, :] = alpha
mask[blend_end:, :, :] = 0.0
blended_crop = (swap_crop.astype(np.float32) * mask + orig_crop.astype(np.float32) * (1.0 - mask)).astype(np.uint8)
blended_frame = swapped_frame.copy()
blended_frame[y1:y2, x1:x2] = blended_crop
return blended_frame
def __download_with_progress(self, url, output_path):
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 1024
t = tqdm(total=total_size, unit='iB', unit_scale=True, desc=f"Downloading {os.path.basename(output_path)}")
with open(output_path, 'wb') as f:
for data in response.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
if total_size != 0 and t.n != total_size:
raise Exception("ERROR, something went wrong downloading the model!")
def __check_providers(self):
available_providers = rt.get_available_providers()
if self.force_cpu:
self.providers = ['CPUExecutionProvider']
else:
# Prefer faster execution providers in order
self.providers = []
for p in ['CoreMLExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']:
if p in available_providers:
self.providers.append(p)
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_PARALLEL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
test_model = os.path.expanduser("~/.insightface/models/buffalo_l/det_10g.onnx")
try:
test_session = rt.InferenceSession(test_model, self.sess_options, providers=self.providers)
active_provider = test_session.get_providers()[0]
except Exception as e:
print(f"[ERROR] Failed to create test session: {e}")
active_provider = 'CPUExecutionProvider'
if active_provider == 'CUDAExecutionProvider':
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
elif active_provider == 'CoreMLExecutionProvider':
self.mode = RefacerMode.COREML
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
else:
self.mode = RefacerMode.CPU
self.use_num_cpus = max(mp.cpu_count() - 1, 1)
self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 2)
print(f"Available providers: {available_providers}")
print(f"Using providers: {self.providers}")
print(f"Active provider: {active_provider}")
print(f"Mode: {self.mode}")
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Detector providers: {sess_face.get_providers()}")
self.face_detector = SCRFD(model_path, sess_face)
self.face_detector.prepare(0, input_size=(640, 640))
model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Recognizer providers: {sess_rec.get_providers()}")
self.rec_app = ArcFaceONNX(model_path, sess_rec)
self.rec_app.prepare(0)
model_dir = os.path.join('weights', 'inswapper')
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, 'inswapper_128.onnx')
if not os.path.exists(model_path):
print(f"Model {model_path} not found. Downloading from HuggingFace...")
url = "https://huggingface.co/ezioruan/inswapper_128.onnx/resolve/main/inswapper_128.onnx"
try:
self.__download_with_progress(url, model_path)
print(f"Downloaded {model_path}")
except Exception as e:
raise RuntimeError(f"Failed to download {model_path}. Error: {e}")
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
print(f"Face Swapper providers: {sess_swap.get_providers()}")
self.face_swapper = INSwapper(model_path, sess_swap)
def prepare_faces(self, faces, disable_similarity=False, multiple_faces_mode=False):
self.replacement_faces = []
self.disable_similarity = disable_similarity
self.multiple_faces_mode = multiple_faces_mode
for face in faces:
if "destination" not in face or face["destination"] is None:
print("Skipping face config: No destination face provided.")
continue
_faces = self.__get_faces(face['destination'], max_num=1)
if len(_faces) < 1:
raise Exception('No face detected on "Destination face" image')
if multiple_faces_mode:
self.replacement_faces.append((None, _faces[0], 0.0))
else:
if "origin" in face and face["origin"] is not None and not disable_similarity:
face_threshold = face['threshold']
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
if len(kpss1) < 1:
raise Exception('No face detected on "Face to replace" image')
feat_original = self.rec_app.get(face['origin'], kpss1[0])
else:
face_threshold = 0
self.first_face = True
feat_original = None
self.replacement_faces.append((feat_original, _faces[0], face_threshold))
def __get_faces(self, frame, max_num=0):
bboxes, kpss = self.face_detector.detect(frame, max_num=max_num, metric='default')
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = kpss[i] if kpss is not None else None
face = Face(bbox=bbox, kps=kps, det_score=det_score)
face.embedding = self.rec_app.get(frame, kps)
ret.append(face)
return ret
def process_first_face(self, frame):
faces = self.__get_faces(frame, max_num=0)
if not faces:
return frame
if self.disable_similarity:
for face in faces:
swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
return frame
def process_faces(self, frame):
faces = self.__get_faces(frame, max_num=0)
if not faces:
return frame
faces = sorted(faces, key=lambda face: face.bbox[0])
if self.multiple_faces_mode:
for idx, face in enumerate(faces):
if idx >= len(self.replacement_faces):
break
swapped = self.face_swapper.get(frame, face, self.replacement_faces[idx][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
elif self.disable_similarity:
for face in faces:
swapped = self.face_swapper.get(frame, face, self.replacement_faces[0][1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, face)
else:
frame = swapped
else:
for rep_face in self.replacement_faces:
for i in range(len(faces) - 1, -1, -1):
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
if sim >= rep_face[2]:
swapped = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
if hasattr(self, 'partial_reface_ratio') and self.partial_reface_ratio > 0.0:
self.blend_height_ratio = self.partial_reface_ratio
frame = self._partial_face_blend(frame, swapped, faces[i])
else:
frame = swapped
del faces[i]
break
return frame
def reface_group(self, faces, frames, output):
with ThreadPoolExecutor(max_workers=self.use_num_cpus) as executor:
if self.first_face:
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames), desc="Processing frames"))
else:
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames), desc="Processing frames"))
for result in results:
output.write(result)
def __check_video_has_audio(self, video_path):
self.video_has_audio = False
probe = ffmpeg.probe(video_path)
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
if audio_stream is not None:
self.video_has_audio = True
def reface(self, video_path, faces, preview=False, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
original_name = osp.splitext(osp.basename(video_path))[0]
timestamp = str(int(time.time()))
filename = f"{original_name}_preview.mp4" if preview else f"{original_name}_{timestamp}.mp4"
self.__check_video_has_audio(video_path)
if preview:
os.makedirs("output/preview", exist_ok=True)
output_video_path = os.path.join('output', 'preview', filename)
else:
os.makedirs("output", exist_ok=True)
output_video_path = os.path.join('output', filename)
self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
self.partial_reface_ratio = partial_reface_ratio
cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frames = []
frame_index = 0
skip_rate = 10 if preview else 1
with tqdm(total=total_frames, desc="Extracting frames") as pbar:
while cap.isOpened():
flag, frame = cap.read()
if not flag:
break
if frame_index % skip_rate == 0:
frames.append(frame)
if len(frames) > 300:
self.reface_group(faces, frames, output)
frames = []
gc.collect()
frame_index += 1
pbar.update()
cap.release()
if frames:
self.reface_group(faces, frames, output)
output.release()
converted_path = self.__convert_video(video_path, output_video_path, preview=preview)
if video_path.lower().endswith(".gif"):
if preview:
gif_output_path = os.path.join("output", "preview", os.path.basename(converted_path).replace(".mp4", ".gif"))
else:
gif_output_path = os.path.join("output", "gifs", os.path.basename(converted_path).replace(".mp4", ".gif"))
self.__generate_gif(converted_path, gif_output_path)
return converted_path, gif_output_path
return converted_path, None
def __generate_gif(self, video_path, gif_output_path):
os.makedirs(os.path.dirname(gif_output_path), exist_ok=True)
print(f"Generating GIF at {gif_output_path}")
(
ffmpeg
.input(video_path)
.output(gif_output_path, vf='fps=10,scale=512:-1:flags=lanczos', loop=0)
.overwrite_output()
.run(quiet=True)
)
def __convert_video(self, video_path, output_video_path, preview=False):
if self.video_has_audio and not preview:
new_path = output_video_path + str(random.randint(0, 999)) + "_c.mp4"
in1 = ffmpeg.input(output_video_path)
in2 = ffmpeg.input(video_path)
out = ffmpeg.output(in1.video, in2.audio, new_path, video_bitrate=self.ffmpeg_video_bitrate, vcodec=self.ffmpeg_video_encoder)
out.run(overwrite_output=True, quiet=True)
else:
new_path = output_video_path
print(f"Refaced video saved at: {os.path.abspath(new_path)}")
return new_path
def reface_image(self, image_path, faces, disable_similarity=False, multiple_faces_mode=False, partial_reface_ratio=0.0):
self.prepare_faces(faces, disable_similarity=disable_similarity, multiple_faces_mode=multiple_faces_mode)
self.first_face = False if multiple_faces_mode else (faces[0].get("origin") is None or disable_similarity)
self.partial_reface_ratio = partial_reface_ratio
ext = osp.splitext(image_path)[1].lower()
os.makedirs("output", exist_ok=True)
original_name = osp.splitext(osp.basename(image_path))[0]
timestamp = str(int(time.time()))
if ext in ['.tif', '.tiff']:
pil_img = Image.open(image_path)
frames = []
page_count = 0
try:
while True:
pil_img.seek(page_count)
page_count += 1
except EOFError:
pass
pil_img = Image.open(image_path)
with tqdm(total=page_count, desc="Processing TIFF pages") as pbar:
for page in range(page_count):
pil_img.seek(page)
bgr_image = cv2.cvtColor(np.array(pil_img.convert('RGB')), cv2.COLOR_RGB2BGR)
refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
enhanced_bgr = enhance_image_memory(refaced_bgr)
enhanced_rgb = cv2.cvtColor(enhanced_bgr, cv2.COLOR_BGR2RGB)
enhanced_pil = Image.fromarray(enhanced_rgb)
frames.append(enhanced_pil)
pbar.update(1)
output_path = os.path.join("output", f"{original_name}_{timestamp}.tif")
frames[0].save(output_path, save_all=True, append_images=frames[1:], compression="tiff_deflate")
print(f"Saved multipage refaced TIFF to {output_path}")
return output_path
else:
bgr_image = cv2.imread(image_path)
if bgr_image is None:
raise ValueError("Failed to read input image")
refaced_bgr = self.process_first_face(bgr_image.copy()) if self.first_face else self.process_faces(bgr_image.copy())
refaced_rgb = cv2.cvtColor(refaced_bgr, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(refaced_rgb)
filename = f"{original_name}_{timestamp}.jpg"
output_path = os.path.join("output", filename)
pil_img.save(output_path, format='JPEG', quality=100, subsampling=0)
output_path = enhance_image(output_path)
print(f"Saved refaced image to {output_path}")
return output_path
def extract_faces_from_image(self, image_path, max_faces=5):
frame = cv2.imread(image_path)
if frame is None:
raise ValueError("Failed to read input image for face extraction.")
faces = self.__get_faces(frame, max_num=max_faces)
cropped_faces = []
for face in faces:
x1, y1, x2, y2 = map(int, face.bbox)
x1 = max(x1, 0)
y1 = max(y1, 0)
x2 = min(x2, frame.shape[1])
y2 = min(y2, frame.shape[0])
cropped = frame[y1:y2, x1:x2]
pil_img = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
temp_file = tempfile.NamedTemporaryFile(delete=False, dir="./tmp", suffix=".png")
pil_img.save(temp_file.name)
cropped_faces.append(temp_file.name)
if len(cropped_faces) >= max_faces:
break
return cropped_faces
def __try_ffmpeg_encoder(self, vcodec):
command = ['ffmpeg', '-y', '-f', 'lavfi', '-i', 'testsrc=duration=1:size=1280x720:rate=30', '-vcodec', vcodec, 'testsrc.mp4']
try:
subprocess.run(command, check=True, capture_output=True).stderr
except subprocess.CalledProcessError:
return False
return True
def __check_encoders(self):
self.ffmpeg_video_encoder = 'libx264'
self.ffmpeg_video_bitrate = '0'
pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
command = ['ffmpeg', '-codecs', '--list-encoders']
commandout = subprocess.run(command, check=True, capture_output=True).stdout
result = commandout.decode('utf-8').split('\n')
for r in result:
if "264" in r:
encoders = re.search(pattern, r)
if encoders:
for v_c in Refacer.VIDEO_CODECS:
for v_k in encoders.group(1).split(' '):
if v_c == v_k and self.__try_ffmpeg_encoder(v_k):
self.ffmpeg_video_encoder = v_k
self.ffmpeg_video_bitrate = Refacer.VIDEO_CODECS[v_k]
return
VIDEO_CODECS = {
'h264_videotoolbox': '0',
'h264_nvenc': '0',
'libx264': '0'
} |