neo / codeformer_wrapper.py
freevpn's picture
Upload folder using huggingface_hub
8234608 verified
import os
import torch
import cv2
import numpy as np
from pathlib import Path
from torchvision.transforms.functional import normalize
from basicsr.utils import img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from basicsr.utils.registry import ARCH_REGISTRY
# Cross-platform device selection: CUDA > MPS > CPU
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
# Download and load model
pretrain_model_url = {
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32', '64', '128', '256']).to(device)
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
model_dir='weights/CodeFormer', progress=True, file_name=None)
checkpoint = torch.load(ckpt_path, map_location=device)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='jpg',
use_parse=True,
device=device
)
def _enhance_img(img: np.ndarray, w: float = 0.5) -> np.ndarray:
"""
Internal helper to enhance a numpy image with CodeFormer.
"""
face_helper.clean_all()
face_helper.read_image(img)
num_faces = face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
if num_faces == 0:
return img # Return original if no faces detected
face_helper.align_warp_face()
for cropped_face in face_helper.cropped_faces:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True).to(device)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0) # (1, 3, H, W), already on correct device
with torch.no_grad():
output = net(cropped_face_t, w=w, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
face_helper.get_inverse_affine(None)
restored_img = face_helper.paste_faces_to_input_image()
return restored_img
def enhance_image(input_image_path: str, w: float = 0.5) -> str:
"""
Enhances an input image using CodeFormer and saves it with a '.enhanced.jpg' suffix.
"""
input_path = Path(input_image_path)
output_path = input_path.with_name(f"{input_path.stem}.enhanced.jpg")
img = cv2.imread(str(input_path), cv2.IMREAD_COLOR)
if img is None:
raise ValueError(f"Cannot read image: {input_image_path}")
restored_img = _enhance_img(img, w=w)
os.makedirs(output_path.parent, exist_ok=True)
cv2.imwrite(str(output_path), restored_img)
print(f"Enhanced image saved to: {output_path}")
return str(output_path)
def enhance_image_memory(img: np.ndarray, w: float = 0.5) -> np.ndarray:
"""
Enhances an input image entirely in memory and returns the enhanced image.
"""
return _enhance_img(img, w=w)