import os import torch import cv2 import numpy as np from pathlib import Path from torchvision.transforms.functional import normalize from basicsr.utils import img2tensor, tensor2img from basicsr.utils.download_util import load_file_from_url from facelib.utils.face_restoration_helper import FaceRestoreHelper from basicsr.utils.registry import ARCH_REGISTRY # Cross-platform device selection: CUDA > MPS > CPU if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") # Download and load model pretrain_model_url = { 'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', } net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], model_dir='weights/CodeFormer', progress=True, file_name=None) checkpoint = torch.load(ckpt_path, map_location=device)['params_ema'] net.load_state_dict(checkpoint) net.eval() face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='jpg', use_parse=True, device=device ) def _enhance_img(img: np.ndarray, w: float = 0.5) -> np.ndarray: """ Internal helper to enhance a numpy image with CodeFormer. """ face_helper.clean_all() face_helper.read_image(img) num_faces = face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) if num_faces == 0: return img # Return original if no faces detected face_helper.align_warp_face() for cropped_face in face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True).to(device) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0) # (1, 3, H, W), already on correct device with torch.no_grad(): output = net(cropped_face_t, w=w, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) face_helper.get_inverse_affine(None) restored_img = face_helper.paste_faces_to_input_image() return restored_img def enhance_image(input_image_path: str, w: float = 0.5) -> str: """ Enhances an input image using CodeFormer and saves it with a '.enhanced.jpg' suffix. """ input_path = Path(input_image_path) output_path = input_path.with_name(f"{input_path.stem}.enhanced.jpg") img = cv2.imread(str(input_path), cv2.IMREAD_COLOR) if img is None: raise ValueError(f"Cannot read image: {input_image_path}") restored_img = _enhance_img(img, w=w) os.makedirs(output_path.parent, exist_ok=True) cv2.imwrite(str(output_path), restored_img) print(f"Enhanced image saved to: {output_path}") return str(output_path) def enhance_image_memory(img: np.ndarray, w: float = 0.5) -> np.ndarray: """ Enhances an input image entirely in memory and returns the enhanced image. """ return _enhance_img(img, w=w)