add zerogpu setup
Browse files- app.py +20 -16
- requirements.txt +3 -2
app.py
CHANGED
@@ -4,6 +4,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import uuid
|
5 |
import os
|
6 |
from datetime import datetime
|
|
|
7 |
|
8 |
# ----- Constants -----
|
9 |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
@@ -12,27 +13,31 @@ with open("system_prompt.txt", "r") as f:
|
|
12 |
LOG_DIR = "chat_logs"
|
13 |
os.makedirs(LOG_DIR, exist_ok=True)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
20 |
-
MODEL_NAME,
|
21 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
22 |
-
device_map="auto" if device == "cuda" else None
|
23 |
-
)
|
24 |
-
model.eval()
|
25 |
-
|
26 |
-
# ----- Log setup -----
|
27 |
session_id = str(uuid.uuid4())
|
28 |
|
|
|
29 |
def log_chat(session_id, user_msg, bot_msg):
|
30 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
31 |
with open(os.path.join(LOG_DIR, f"{session_id}.txt"), "a") as f:
|
32 |
f.write(f"[{timestamp}] User: {user_msg}\n")
|
33 |
f.write(f"[{timestamp}] Bot: {bot_msg}\n\n")
|
34 |
|
35 |
-
# -----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def format_chat_prompt(history, new_input):
|
37 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
38 |
for user_msg, bot_msg in history:
|
@@ -54,14 +59,13 @@ def respond(message, history):
|
|
54 |
pad_token_id=tokenizer.eos_token_id
|
55 |
)
|
56 |
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
-
# Extract the assistant's final message
|
58 |
response = decoded.split(message)[-1].strip().split("\n")[0].strip()
|
59 |
log_chat(session_id, message, response)
|
60 |
return response
|
61 |
|
62 |
-
# ----- Gradio
|
63 |
gr.ChatInterface(
|
64 |
fn=respond,
|
65 |
title="BoundrAI",
|
66 |
-
theme="soft"
|
67 |
).launch()
|
|
|
4 |
import uuid
|
5 |
import os
|
6 |
from datetime import datetime
|
7 |
+
import spaces # required for ZeroGPU
|
8 |
|
9 |
# ----- Constants -----
|
10 |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
|
13 |
LOG_DIR = "chat_logs"
|
14 |
os.makedirs(LOG_DIR, exist_ok=True)
|
15 |
|
16 |
+
# Global vars to hold model and tokenizer
|
17 |
+
model = None
|
18 |
+
tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
session_id = str(uuid.uuid4())
|
20 |
|
21 |
+
# ----- Log Chat -----
|
22 |
def log_chat(session_id, user_msg, bot_msg):
|
23 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
24 |
with open(os.path.join(LOG_DIR, f"{session_id}.txt"), "a") as f:
|
25 |
f.write(f"[{timestamp}] User: {user_msg}\n")
|
26 |
f.write(f"[{timestamp}] Bot: {bot_msg}\n\n")
|
27 |
|
28 |
+
# ----- Required by ZeroGPU -----
|
29 |
+
@spaces.GPU
|
30 |
+
def load_model():
|
31 |
+
global model, tokenizer
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
MODEL_NAME,
|
35 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
36 |
+
device_map="auto"
|
37 |
+
)
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
# ----- Inference Function -----
|
41 |
def format_chat_prompt(history, new_input):
|
42 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
43 |
for user_msg, bot_msg in history:
|
|
|
59 |
pad_token_id=tokenizer.eos_token_id
|
60 |
)
|
61 |
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
62 |
response = decoded.split(message)[-1].strip().split("\n")[0].strip()
|
63 |
log_chat(session_id, message, response)
|
64 |
return response
|
65 |
|
66 |
+
# ----- Gradio App -----
|
67 |
gr.ChatInterface(
|
68 |
fn=respond,
|
69 |
title="BoundrAI",
|
70 |
+
theme="soft"
|
71 |
).launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
-
transformers
|
3 |
gradio
|
4 |
-
|
|
|
|
|
|
1 |
huggingface_hub==0.25.2
|
|
|
2 |
gradio
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
spaces
|