frimelle HF Staff commited on
Commit
d4ea062
·
1 Parent(s): 8d6f8e3

reset to basic

Browse files
Files changed (2) hide show
  1. app.py +57 -60
  2. requirements.txt +1 -6
app.py CHANGED
@@ -1,72 +1,69 @@
1
  import gradio as gr
2
- import torch
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
- import uuid
5
- import os
6
- from datetime import datetime
7
- import spaces
8
 
9
- MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
10
  with open("system_prompt.txt", "r") as f:
11
  SYSTEM_PROMPT = f.read()
12
- LOG_DIR = "chat_logs"
13
- os.makedirs(LOG_DIR, exist_ok=True)
14
 
15
- # Globals
16
- model = None
17
- tokenizer = None
18
- session_id = str(uuid.uuid4())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- def log_chat(session_id, user_msg, bot_msg):
21
- timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
22
- with open(os.path.join(LOG_DIR, f"{session_id}.txt"), "a") as f:
23
- f.write(f"[{timestamp}] User: {user_msg}\n")
24
- f.write(f"[{timestamp}] Bot: {bot_msg}\n\n")
25
 
26
- # This function will be run by ZeroGPU
27
- @spaces.GPU
28
- def load_model():
29
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
30
- model = AutoModelForCausalLM.from_pretrained(
31
- MODEL_NAME,
32
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
33
- device_map="auto"
34
- )
35
- return tokenizer, model
36
 
37
- def format_chat_prompt(history, new_input):
38
- messages = [{"role": "system", "content": SYSTEM_PROMPT}]
39
- for user_msg, bot_msg in history:
40
- messages.append({"role": "user", "content": user_msg})
41
- messages.append({"role": "assistant", "content": bot_msg})
42
- messages.append({"role": "user", "content": new_input})
43
- return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
44
 
45
- @torch.no_grad()
46
- def respond(message, history):
47
- global tokenizer, model
48
 
49
- # Lazy-load model only when needed
50
- if tokenizer is None or model is None:
51
- tokenizer, model = load_model()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
- prompt = format_chat_prompt(history, message)
54
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
55
- output = model.generate(
56
- **inputs,
57
- max_new_tokens=512,
58
- do_sample=True,
59
- temperature=0.7,
60
- top_p=0.95,
61
- pad_token_id=tokenizer.eos_token_id
62
- )
63
- decoded = tokenizer.decode(output[0], skip_special_tokens=True)
64
- response = decoded.split(message)[-1].strip().split("\n")[0].strip()
65
- log_chat(session_id, message, response)
66
- return response
67
 
68
- gr.ChatInterface(
69
- fn=respond,
70
- title="BoundrAI",
71
- theme="soft"
72
- ).launch()
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
 
4
  with open("system_prompt.txt", "r") as f:
5
  SYSTEM_PROMPT = f.read()
 
 
6
 
7
+ MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
8
+
9
+ """
10
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
11
+ """
12
+ client = InferenceClient(MODEL_NAME)
13
+
14
+
15
+ def respond(
16
+ message,
17
+ history: list[tuple[str, str]],
18
+ system_message,
19
+ max_tokens,
20
+ temperature,
21
+ top_p,
22
+ ):
23
+ messages = [{"role": "system", "content": system_message}]
24
+
25
+ for val in history:
26
+ if val[0]:
27
+ messages.append({"role": "user", "content": val[0]})
28
+ if val[1]:
29
+ messages.append({"role": "assistant", "content": val[1]})
30
+
31
+ messages.append({"role": "user", "content": message})
32
 
33
+ response = ""
 
 
 
 
34
 
35
+ for message in client.chat_completion(
36
+ messages,
37
+ max_tokens=max_tokens,
38
+ stream=True,
39
+ temperature=temperature,
40
+ top_p=top_p,
41
+ ):
42
+ token = message.choices[0].delta.content
 
 
43
 
44
+ response += token
45
+ yield response
 
 
 
 
 
46
 
 
 
 
47
 
48
+ """
49
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
50
+ """
51
+ demo = gr.ChatInterface(
52
+ respond,
53
+ additional_inputs=[
54
+ gr.Textbox(value=SYSTEM_PROMPT, label="System message"),
55
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
56
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
57
+ gr.Slider(
58
+ minimum=0.1,
59
+ maximum=1.0,
60
+ value=0.95,
61
+ step=0.05,
62
+ label="Top-p (nucleus sampling)",
63
+ ),
64
+ ],
65
+ )
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ if __name__ == "__main__":
69
+ demo.launch()
 
 
 
requirements.txt CHANGED
@@ -1,6 +1 @@
1
- huggingface_hub==0.25.2
2
- gradio
3
- transformers
4
- torch
5
- spaces
6
- accelerate>=0.26.0
 
1
+ huggingface_hub==0.25.2