import gradio as gr from huggingface_hub import InferenceClient from datetime import datetime import os import uuid # ---- System Prompt ---- with open("system_prompt.txt", "r") as f: SYSTEM_PROMPT = f.read() MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" client = InferenceClient(MODEL_NAME) # ---- Setup logging ---- LOG_DIR = "chat_logs" os.makedirs(LOG_DIR, exist_ok=True) session_id = str(uuid.uuid4()) def log_chat(session_id, user_msg, bot_msg): timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") log_path = os.path.join(LOG_DIR, f"{session_id}.txt") with open(log_path, "a", encoding="utf-8") as f: f.write(f"[{timestamp}] User: {user_msg}\n") f.write(f"[{timestamp}] Bot: {bot_msg}\n\n") # ---- Respond Function with Logging ---- def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content if token: response += token yield response # Save full message after stream ends log_chat(session_id, message, response) # ---- Gradio Interface ---- demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=SYSTEM_PROMPT, label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], title="BoundrAI" ) if __name__ == "__main__": demo.launch()