Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
# Função de simulação, ajustada para Gradio | |
def run_monte_carlo_simulation(tasks_list_of_tuples, n_simulations): | |
task_names_original = [ | |
'1. Requisitos', '2. Arquitetura', '3. Back-end', | |
'4. Front-end', '5. Testes', '6. Implantação' | |
] | |
tasks = [{'tarefa': name, 'a': a, 'm': m, 'b': b} for name, (a, m, b) in zip(task_names_original, tasks_list_of_tuples)] | |
task_names = [task['tarefa'] for task in tasks] | |
n_simulations = int(n_simulations) | |
simulation_results = {name: np.zeros(n_simulations) for name in task_names} | |
for i in range(n_simulations): | |
for task in tasks: | |
a, m, b = task['a'], task['m'], task['b'] | |
if not (a > 0 and a <= m and m <= b): | |
raise gr.Error(f"Parâmetros inválidos na tarefa: {task['tarefa']}. Garanta que Otimista <= Provável <= Pessimista.") | |
mu = (a + 4 * m + b) / 6 | |
if b - a == 0: | |
task_duration = a | |
else: | |
gamma = 4.0 | |
alpha = 1 + gamma * (mu - a) / (b - a) | |
beta = 1 + gamma * (b - mu) / (b - a) | |
sample = np.random.beta(alpha, beta) | |
task_duration = a + sample * (b - a) | |
simulation_results[task['tarefa']][i] = task_duration | |
results_df = pd.DataFrame(simulation_results) | |
results_df['Duração Total'] = results_df.sum(axis=1) | |
return results_df | |
# Função principal da interface | |
def generate_analysis(*args): | |
n_simulations = args[-1] | |
task_values = args[:-1] | |
tasks_list_of_tuples = [tuple(task_values[i:i+3]) for i in range(0, len(task_values), 3)] | |
results_df = run_monte_carlo_simulation(tasks_list_of_tuples, n_simulations) | |
durations = results_df['Duração Total'] | |
summary_df = pd.DataFrame({ | |
'Métrica': ['Prazo Realista (50%)', 'Prazo de Segurança (95%)', 'Nível de Incerteza'], | |
'Valor (dias)': [f"{np.median(durations):.1f}", f"{np.percentile(durations, 95):.1f}", f"{np.std(durations):.1f}"] | |
}).set_index('Métrica') | |
fig_hist, ax_hist = plt.subplots(figsize=(10, 6)) | |
sns.histplot(durations, kde=True, bins=50, ax=ax_hist, color="skyblue") | |
ax_hist.axvline(np.median(durations), color='green', linestyle='-', label=f'Prazo Realista: {np.median(durations):.1f} dias') | |
ax_hist.axvline(np.percentile(durations, 95), color='purple', linestyle=':', lw=2, label=f'Prazo de Segurança: {np.percentile(durations, 95):.1f} dias') | |
ax_hist.set_title('Distribuição de Resultados', fontsize=16) | |
ax_hist.set_xlabel('Duração Total (dias)') | |
ax_hist.set_ylabel('Frequência') | |
ax_hist.legend() | |
task_names_original = ['1. Requisitos', '2. Arquitetura', '3. Back-end', '4. Front-end', '5. Testes', '6. Implantação'] | |
correlations = results_df.corr(numeric_only=True)['Duração Total'].drop('Duração Total') | |
correlations.index = task_names_original | |
sorted_correlations = correlations.abs().sort_values(ascending=False) | |
fig_tornado, ax_tornado = plt.subplots(figsize=(10, 6)) | |
sns.barplot(x=sorted_correlations.values, y=sorted_correlations.index, orient='h', ax=ax_tornado, palette='viridis') | |
ax_tornado.set_title('Análise de Sensibilidade', fontsize=16) | |
ax_tornado.set_xlabel('Força de Impacto no Cronograma') | |
return summary_df, fig_hist, fig_tornado | |
# Construção da Interface com Gradio | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# 🗺️ Simulador Interativo de Risco de Projetos") | |
gr.Markdown("Altere as estimativas de cada tarefa para analisar diferentes cenários e seus impactos.") | |
task_inputs = [] | |
task_names = ['1. Requisitos', '2. Arquitetura', '3. Back-end', '4. Front-end', '5. Testes', '6. Implantação'] | |
initial_values = [(5, 7, 15), (8, 10, 18), (20, 25, 45), (15, 20, 30), (10, 12, 20), (1, 2, 4)] | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### ⚙️ Parâmetros de Entrada") | |
for i, name in enumerate(task_names): | |
with gr.Accordion(name, open=(i < 2)): | |
a = gr.Slider(1, 100, value=initial_values[i][0], step=1, label="Otimista (a)") | |
m = gr.Slider(1, 100, value=initial_values[i][1], step=1, label="Provável (m)") | |
b = gr.Slider(1, 100, value=initial_values[i][2], step=1, label="Pessimista (b)") | |
task_inputs.extend([a, m, b]) | |
n_sim = gr.Slider(1000, 100000, value=50000, step=1000, label="Nº de Simulações") | |
task_inputs.append(n_sim) | |
run_button = gr.Button("Analisar Cenário", variant="primary") | |
with gr.Column(scale=2): | |
gr.Markdown("### 🔍 Resultados da Análise") | |
summary_output = gr.DataFrame(headers=["Métrica", "Valor (dias)"], row_count=3, col_count=2) | |
with gr.Tabs(): | |
with gr.TabItem("Distribuição de Resultados"): | |
hist_output = gr.Plot() | |
with gr.TabItem("Análise de Sensibilidade"): | |
tornado_output = gr.Plot() | |
run_button.click( | |
fn=generate_analysis, | |
inputs=task_inputs, | |
outputs=[summary_output, hist_output, tornado_output] | |
) | |
demo.launch() | |