import gradio as gr import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Função de simulação, ajustada para Gradio def run_monte_carlo_simulation(tasks_list_of_tuples, n_simulations): task_names_original = [ '1. Requisitos', '2. Arquitetura', '3. Back-end', '4. Front-end', '5. Testes', '6. Implantação' ] tasks = [{'tarefa': name, 'a': a, 'm': m, 'b': b} for name, (a, m, b) in zip(task_names_original, tasks_list_of_tuples)] task_names = [task['tarefa'] for task in tasks] n_simulations = int(n_simulations) simulation_results = {name: np.zeros(n_simulations) for name in task_names} for i in range(n_simulations): for task in tasks: a, m, b = task['a'], task['m'], task['b'] if not (a > 0 and a <= m and m <= b): raise gr.Error(f"Parâmetros inválidos na tarefa: {task['tarefa']}. Garanta que Otimista <= Provável <= Pessimista.") mu = (a + 4 * m + b) / 6 if b - a == 0: task_duration = a else: gamma = 4.0 alpha = 1 + gamma * (mu - a) / (b - a) beta = 1 + gamma * (b - mu) / (b - a) sample = np.random.beta(alpha, beta) task_duration = a + sample * (b - a) simulation_results[task['tarefa']][i] = task_duration results_df = pd.DataFrame(simulation_results) results_df['Duração Total'] = results_df.sum(axis=1) return results_df # Função principal da interface def generate_analysis(*args): n_simulations = args[-1] task_values = args[:-1] tasks_list_of_tuples = [tuple(task_values[i:i+3]) for i in range(0, len(task_values), 3)] results_df = run_monte_carlo_simulation(tasks_list_of_tuples, n_simulations) durations = results_df['Duração Total'] summary_df = pd.DataFrame({ 'Métrica': ['Prazo Realista (50%)', 'Prazo de Segurança (95%)', 'Nível de Incerteza'], 'Valor (dias)': [f"{np.median(durations):.1f}", f"{np.percentile(durations, 95):.1f}", f"{np.std(durations):.1f}"] }).set_index('Métrica') fig_hist, ax_hist = plt.subplots(figsize=(10, 6)) sns.histplot(durations, kde=True, bins=50, ax=ax_hist, color="skyblue") ax_hist.axvline(np.median(durations), color='green', linestyle='-', label=f'Prazo Realista: {np.median(durations):.1f} dias') ax_hist.axvline(np.percentile(durations, 95), color='purple', linestyle=':', lw=2, label=f'Prazo de Segurança: {np.percentile(durations, 95):.1f} dias') ax_hist.set_title('Distribuição de Resultados', fontsize=16) ax_hist.set_xlabel('Duração Total (dias)') ax_hist.set_ylabel('Frequência') ax_hist.legend() task_names_original = ['1. Requisitos', '2. Arquitetura', '3. Back-end', '4. Front-end', '5. Testes', '6. Implantação'] correlations = results_df.corr(numeric_only=True)['Duração Total'].drop('Duração Total') correlations.index = task_names_original sorted_correlations = correlations.abs().sort_values(ascending=False) fig_tornado, ax_tornado = plt.subplots(figsize=(10, 6)) sns.barplot(x=sorted_correlations.values, y=sorted_correlations.index, orient='h', ax=ax_tornado, palette='viridis') ax_tornado.set_title('Análise de Sensibilidade', fontsize=16) ax_tornado.set_xlabel('Força de Impacto no Cronograma') return summary_df, fig_hist, fig_tornado # Construção da Interface com Gradio with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🗺️ Simulador Interativo de Risco de Projetos") gr.Markdown("Altere as estimativas de cada tarefa para analisar diferentes cenários e seus impactos.") task_inputs = [] task_names = ['1. Requisitos', '2. Arquitetura', '3. Back-end', '4. Front-end', '5. Testes', '6. Implantação'] initial_values = [(5, 7, 15), (8, 10, 18), (20, 25, 45), (15, 20, 30), (10, 12, 20), (1, 2, 4)] with gr.Row(): with gr.Column(scale=1): gr.Markdown("### ⚙️ Parâmetros de Entrada") for i, name in enumerate(task_names): with gr.Accordion(name, open=(i < 2)): a = gr.Slider(1, 100, value=initial_values[i][0], step=1, label="Otimista (a)") m = gr.Slider(1, 100, value=initial_values[i][1], step=1, label="Provável (m)") b = gr.Slider(1, 100, value=initial_values[i][2], step=1, label="Pessimista (b)") task_inputs.extend([a, m, b]) n_sim = gr.Slider(1000, 100000, value=50000, step=1000, label="Nº de Simulações") task_inputs.append(n_sim) run_button = gr.Button("Analisar Cenário", variant="primary") with gr.Column(scale=2): gr.Markdown("### 🔍 Resultados da Análise") summary_output = gr.DataFrame(headers=["Métrica", "Valor (dias)"], row_count=3, col_count=2) with gr.Tabs(): with gr.TabItem("Distribuição de Resultados"): hist_output = gr.Plot() with gr.TabItem("Análise de Sensibilidade"): tornado_output = gr.Plot() run_button.click( fn=generate_analysis, inputs=task_inputs, outputs=[summary_output, hist_output, tornado_output] ) demo.launch()