Spaces:
Sleeping
Sleeping
File size: 20,096 Bytes
5f39e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# -*- coding: utf-8 -*-
"""Deploy_CapstoneRagBench.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1OG-77VqKwz3509_osgNgSeOMJ9G6RvB4
"""
# For Legal
from datasets import load_from_disk
from transformers import AutoTokenizer, AutoModel
import faiss
import numpy as np
import torch
from datasets import load_dataset, Dataset, get_dataset_config_names
import os
from groq import Groq
from sentence_transformers import CrossEncoder
import requests
import uuid
import re
import gradio as gr
import json
import torch
import numpy as np
from sklearn.metrics import mean_squared_error, roc_auc_score
import gradio as gr
import io
import sys
import traceback
def retrieve_top_k(query,domain='legal', model_name='nlpaueb/legal-bert-base-uncased', k=8):
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name).to(device)
model.eval()
#print(f"In retrive_top_k Query:{query}")
# Tokenize and embed query using mean pooling
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
query_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
# Load FAISS index and dataset
index_path = f"{domain}_index/faiss.index"
dataset_path = f"{domain}_dataset"
faiss_index = faiss.read_index(index_path)
dataset = load_from_disk(dataset_path)
# Perform FAISS search
D, I = faiss_index.search(query_embedding.astype('float32'), k)
# Retrieve top-k matching chunks
top_chunks = [dataset[int(idx)]['text'] for idx in I[0]]
return top_chunks
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#print(device)
dataset = load_dataset("rungalileo/ragbench", "cuad", split="test")
client = Groq(
api_key= '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',#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',
)
# Load BGE reranker
reranker = CrossEncoder("BAAI/bge-reranker-base", max_length=512)
def rerank_documents_bge(query, documents, top_n=5, return_scores=False):
"""
Rerank documents using BAAI/bge-reranker-base CrossEncoder.
Args:
query (str): The query string.
documents (List[str]): List of candidate documents.
top_n (int): Number of top results to return.
return_scores (bool): Whether to return scores along with documents.
Returns:
List[str] or List[Tuple[str, float]]
"""
if not documents:
return []
# Prepare (query, doc) pairs
pairs = [(query, doc) for doc in documents]
# Predict relevance scores
scores = reranker.predict(pairs, batch_size=16)
# Sort by score descending
reranked = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
if return_scores:
return reranked[:top_n]
else:
return [doc for doc, _ in reranked[:top_n]]
def generate_response_rag(query,model,index_dir="legal_index"):
# Step 1: Retrieve top-k context chunks using your FAISS setup
top_chunks = retrieve_top_k(query,'legal', "nlpaueb/legal-bert-base-uncased")
# Step 2: Rerank retrieved documents using cross-encoder
#reranked_chunks = rerank_documents(query, top_chunks, top_n=15)
#rerank_and_filter_chunks = filter_by_faithfulness(query, reranked_chunks)
#reranked_chunks = rerank_and_filter_chunks
reranked_chunks_bge = rerank_documents_bge(query, top_chunks, top_n=5)
#sum_context = summarize_context("\n\n".join(reranked_chunks_bge))
final_context = reranked_chunks_bge
# Step 2: Prepare context and RAG-style prompt
context = "\n\n".join(final_context)
#print(f"Context:{context}")
prompt = f"""You are a helpful legal assistant.
Use the following context to answer the question.
Using only the information from the retrieved context, answer the following question. If the answer cannot be derived, say "I don't know." Always have answer with prefix **Answer:**
Context:{context}
Question: {query}
Answer:"""
# Step 3: Call the LLM (LLaMA3 or any chat model)
chat_completion = client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
model=model,#"gemma2-9b-it"#"qwen/qwen3-32b"#deepseek-r1-distill-llama-70b",#"llama3-70b-8192", # mistral-saba-24b
temperature=0.0
)
return chat_completion.choices[0].message.content.strip()
'''response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": prompt}
],
temperature=0.0,
max_tokens=1024
)
return response.choices[0].message.content'''
#JUDGE LLM
def split_into_keyed_sentences(text, prefix):
"""Splits text into sentences with keys like '0a.', '0b.', or 'a.', 'b.', etc."""
# Basic sentence tokenizer with keys
sentences = re.split(r'(?<=[.?!])\s+', text.strip())
keyed = {}
for i, s in enumerate(sentences):
key = f"{prefix}{chr(97 + i)}" # 'a', 'b', ...
if s:
keyed[key] = s.strip()
return keyed
def jugde_response_rag(query, embedder="nlpaueb/legal-bert-base-uncased", domain="legal", k=5):
top_chunks = retrieve_top_k(query)
top_chunks = [chunk[0] if isinstance(chunk, tuple) else chunk for chunk in top_chunks]
# Step 2: Prepare context and RAG-style prompt
context = "\n\n".join(top_chunks)
# Split context and dummy answer into keyed sentences
document_keys = split_into_keyed_sentences(context, "0")
#print(f"Query:{query}\n====================================================================")
response = generate_response_rag(query,model="llama3-70b-8192") #deepseek-r1-distill-llama-70b llama3-70b-8192
#print(f"\n====================================\Generator Response:{response}")
#For deepseek
#print("Before Curated:",response)
response=response[response.find("**Answer"):].replace("**Answer","");
print(f"Response for Generator LLM:{response}")
response_keys = split_into_keyed_sentences(response, "")
# Rebuild sections for prompt
documents_formatted = "\n".join([f"{k}. {v}" for k, v in document_keys.items()])
response_formatted = "\n".join([f"{k}. {v}" for k, v in response_keys.items()])
'''print(f"\n====================================================================")
print(f"documents_formatted:{documents_formatted}")
print(f"\n====================================================================")
print(f"response_formatted:{response_formatted}")
print(f"\n====================================================================")'''
prompt = f"""I asked someone to answer a question based on one or more documents.
Your task is to review their response and assess whether or not each sentence
in that response is supported by text in the documents. And if so, which
sentences in the documents provide that support. You will also tell me which
of the documents contain useful information for answering the question, and
which of the documents the answer was sourced from.
Here are the documents, each of which is split into sentences. Alongside each
sentence is associated key, such as β0a.β or β0b.β that you can use to refer
to it:
'''
{documents_formatted}
'''
The question was:
'''
{query}
'''
Here is their response, split into sentences. Alongside each sentence is
associated key, such as βa.β or βb.β that you can use to refer to it. Note
that these keys are unique to the response, and are not related to the keys
in the documents:
'''
{response_formatted}
'''
You must respond with a JSON object matching this schema:
'''
{{
"relevance_explanation": string,
"all_relevant_sentence_keys": [string],
"overall_supported_explanation": string,
"overall_supported": boolean,
"sentence_support_information": [
{{
"response_sentence_key": string,
"explanation": string,
"supporting_sentence_keys": [string],
"fully_supported": boolean
}},
],
"all_utilized_sentence_keys": [string]
}}
'''
The relevance_explanation field is a string explaining which documents
contain useful information for answering the question. Provide a step-by-step
breakdown of information provided in the documents and how it is useful for
answering the question.
The all_relevant_sentence_keys field is a list of all document sentences keys
(e.g. β0aβ) that are revant to the question. Include every sentence that is
useful and relevant to the question, even if it was not used in the response,
or if only parts of the sentence are useful. Ignore the provided response when
making this judgement and base your judgement solely on the provided documents
and question. Omit sentences that, if removed from the document, would not
impact someoneβs ability to answer the question.
The overall_supported_explanation field is a string explaining why the response
*as a whole* is or is not supported by the documents. In this field, provide a
step-by-step breakdown of the claims made in the response and the support (or
lack thereof) for those claims in the documents. Begin by assessing each claim
separately, one by one; donβt make any remarks about the response as a whole
until you have assessed all the claims in isolation.
The overall_supported field is a boolean indicating whether the response as a
whole is supported by the documents. This value should reflect the conclusion
you drew at the end of your step-by-step breakdown in overall_supported_explanation.
In the sentence_support_information field, provide information about the support
*for each sentence* in the response.
The sentence_support_information field is a list of objects, one for each sentence
in the response. Each object MUST have the following fields:
- response_sentence_key: a string identifying the sentence in the response.
This key is the same as the one used in the response above.
- explanation: a string explaining why the sentence is or is not supported by the
documents.
- supporting_sentence_keys: keys (e.g. β0aβ) of sentences from the documents that
support the response sentence. If the sentence is not supported, this list MUST
be empty. If the sentence is supported, this list MUST contain one or more keys.
In special cases where the sentence is supported, but not by any specific sentence,
you can use the string "supported_without_sentence" to indicate that the sentence
is generally supported by the documents. Consider cases where the sentence is
expressing inability to answer the question due to lack of relevant information in
the provided contex as "supported_without_sentence". In cases where the sentence
is making a general statement (e.g. outlining the steps to produce an answer, or
summarizing previously stated sentences, or a transition sentence), use the
sting "general".In cases where the sentence is correctly stating a well-known fact,
like a mathematical formula, use the string "well_known_fact". In cases where the
sentence is performing numerical reasoning (e.g. addition, multiplication), use
the string "numerical_reasoning".
- fully_supported: a boolean indicating whether the sentence is fully supported by
the documents.
- This value should reflect the conclusion you drew at the end of your step-by-step
breakdown in explanation.
- If supporting_sentence_keys is an empty list, then fully_supported must be false.
17
- Otherwise, use fully_supported to clarify whether everything in the response
sentence is fully supported by the document text indicated in supporting_sentence_keys
(fully_supported = true), or whether the sentence is only partially or incompletely
supported by that document text (fully_supported = false).
The all_utilized_sentence_keys field is a list of all sentences keys (e.g. β0aβ) that
were used to construct the answer. Include every sentence that either directly supported
the answer, or was implicitly used to construct the answer, even if it was not used
in its entirety. Omit sentences that were not used, and could have been removed from
the documents without affecting the answer.
You must respond with a valid JSON string. Use escapes for quotes, e.g. β\\"β, and
newlines, e.g. β\\nβ. Do not write anything before or after the JSON string. Do not
wrap the JSON string in backticks like βββ or βββjson.
As a reminder: your task is to review the response and assess which documents contain
useful information pertaining to the question, and how each sentence in the response
is supported by the text in the documents.\
"""
# Step 3: Call the LLM
chat_completion = client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
model="meta-llama/llama-4-maverick-17b-128e-instruct", #deepseek-r1-distill-llama-70b llama3-70b-8192 meta-llama/llama-4-maverick-17b-128e-instruct
)
return documents_formatted,chat_completion.choices[0].message.content.strip()
'''chat_completion = openai.chat.completions.create(
messages=[
{"role":"user",
"content":prompt}
],
model="gpt-4o",
max_tokens=1024,
)
return documents_formatted,chat_completion.choices[0].message.content'''
def extract_retrieved_sentence_keys(document_text: str) -> list[str]:
"""
Extracts sentence keys like '0a.', '0b.', etc. from a formatted document string.
Parameters:
- document_text (str): full text of document with sentence keys
Returns:
- List of unique sentence keys in the order they appear
"""
# Match pattern like 0a., 0b., 0z., 0{., 0|., etc.
pattern = r'\b0[\w\{\|\}~ΒΒΒ]\.'
matches = re.findall(pattern, document_text)
return list(dict.fromkeys(matches)) # Removes duplicates while preserving order
def compute_ragbench_metrics(judge_response: dict, retrieved_sentence_keys: list[str]) -> dict:
"""
Computes RAGBench-style metrics from Judge LLM response.
Parameters:
- judge_response (dict): JSON response from Judge LLM
- retrieved_sentence_keys (list of str): all sentence keys from the retrieved documents
Returns:
- Dictionary with Context Relevance, Context Utilization, Completeness, and Adherence
"""
R = set(judge_response.get("all_relevant_sentence_keys", [])) # Relevant sentences
U = set(judge_response.get("all_utilized_sentence_keys", [])) # Utilized sentences
intersection_RU = R & U
total_retrieved = len(retrieved_sentence_keys)
len_R = len(R)
len_U = len(U)
len_intersection = len(intersection_RU)
# Context Relevance: fraction of retrieved context that is relevant
context_relevance = len_R / total_retrieved if total_retrieved else 0.0
# Context Utilization: fraction of retrieved context that was used
context_utilization = len_U / total_retrieved if total_retrieved else 0.0
# Completeness: fraction of relevant content that was used
completeness = len_intersection / len_R if len_R else 0.0
# Adherence: 1 if all response sentences are fully supported, else 0
is_fully_supported = all(s.get("fully_supported", False)
for s in judge_response.get("sentence_support_information", []))
adherence = 1.0 if is_fully_supported and judge_response.get("overall_supported", False) else 0.0
return {
"Context Relevance": round(context_relevance, 4),
"Context Utilization": round(context_utilization, 4),
"Completeness": round(completeness, 4),
"Adherence": adherence
}
def compute_rmse(gt, pred):
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
def evaluate_rag_pipeline(q_indices):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def safe_append(gt_list, pred_list, gt_val, pred_val):
if gt_val is not None and pred_val is not None:
gt_list.append(gt_val)
pred_list.append(pred_val)
def clean_and_parse_json_block(text):
# Strip markdown-style code block if present
#text = text.strip().strip("`").strip()
code_block_match = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", text)
if code_block_match:
text = code_block_match.group(1).strip()
# Remove invalid/control characters that break decoding
text = re.sub(r"[^\x20-\x7E\n\t]", "", text)
try:
return json.loads(text)
except json.JSONDecodeError as e:
print("β JSON Decode Error:", e)
print("β οΈ Cleaned text:\n", text)
raise
gt_relevance, pred_relevance = [], []
gt_utilization, pred_utilization = [], []
gt_completeness, pred_completeness = [], []
gt_adherence, pred_adherence = [], []
for i in q_indices:
query = dataset[i]['question']
print(f"\n\n\nQuery:{i}.{query}\n====================================================================")
documents_formatted, response = jugde_response_rag(
query, embedder="nlpaueb/legal-bert-base-uncased", domain="legal")
judge_response = clean_and_parse_json_block(response)
print(f"\n======================================================================\nResponse:{judge_response}")
retrieved_sentences = extract_retrieved_sentence_keys(documents_formatted)
predicted = compute_ragbench_metrics(judge_response, retrieved_sentences)
# GT values
gt_r = dataset[i].get('relevance_score')
gt_u = dataset[i].get('utilization_score')
gt_c = dataset[i].get('completeness_score')
gt_a = dataset[i].get('gpt3_adherence')
safe_append(gt_relevance, pred_relevance, gt_r, predicted['Context Relevance'])
safe_append(gt_utilization, pred_utilization, gt_u, predicted['Context Utilization'])
safe_append(gt_completeness, pred_completeness, gt_c, predicted['Completeness'])
if gt_a is not None and predicted['Adherence'] is not None:
safe_append(gt_adherence, pred_adherence, int(gt_a), int(predicted['Adherence']))
def compute_rmse(gt, pred):
return round(np.sqrt(np.mean((np.array(gt) - np.array(pred)) ** 2)), 4)
result = {
"Context Relevance": compute_rmse(gt_relevance, pred_relevance),
"Context Utilization": compute_rmse(gt_utilization, pred_utilization),
"Completeness": compute_rmse(gt_completeness, pred_completeness),
}
if len(set(gt_adherence)) == 2:
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
result["AUC-ROC (Adherence)"] = round(roc_auc_score(gt_adherence, pred_adherence), 4)
else:
result["Adherence"] = compute_rmse(gt_adherence, pred_adherence)
result["AUC-ROC (Adherence)"] = "N/A - one class only"
return result
# Wrapper to parse textbox input into list of ints
def evaluate_rag_gradio(q_indices_str):
# Capture printed logs
log_stream = io.StringIO()
sys.stdout = log_stream
try:
q_indices = [int(x.strip()) for x in q_indices_str.split(",") if x.strip().isdigit()]
results = evaluate_rag_pipeline(q_indices)
# Return metrics and logs
logs = log_stream.getvalue()
return results, logs
except Exception as e:
traceback.print_exc()
return {"error": str(e)}, log_stream.getvalue()
finally:
sys.stdout = sys.__stdout__
iface = gr.Interface(
fn=evaluate_rag_gradio,
inputs=gr.Textbox(label="Comma-separated Query Indices (e.g. 89,121,245)", lines=1),
outputs=[
gr.JSON(label="Evaluation Metrics (RMSE & AUC-ROC)"),
gr.Textbox(label="Execution Log", lines=5, interactive=True)
],
title="RAG Evaluation Dashboard",
description="Evaluate your RAG pipeline across selected queries using GPT-based generation and judgment."
)
iface.launch(debug=True)
|