import os import glob import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration #Blip2 models # Load the pretrained processor and model processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") # Specify the directory where your images are image_dir = "/" image_exts = ["jpg", "jpeg", "png"] # specify the image file extensions to search for # Open a file to write the captions with open("captions.txt", "w") as caption_file: # Iterate over each image file in the directory for image_ext in image_exts: for img_path in glob.glob(os.path.join(image_dir, f"*.{image_ext}")): # Load your image raw_image = Image.open(img_path).convert('RGB') # You do not need a question for image captioning inputs = processor(raw_image, return_tensors="pt") # Generate a caption for the image out = model.generate(**inputs, max_new_tokens=50) # Decode the generated tokens to text caption = processor.decode(out[0], skip_special_tokens=True) # Write the caption to the file, prepended by the image file name caption_file.write(f"{os.path.basename(img_path)}: {caption}\n")