Computer Science Batch 01 - Algorithms & Data Structures - Programming Framework Analysis

This document presents computer science processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.

1. Sorting Algorithms Process

graph TD A1[Input Array] --> B1[Algorithm Selection] C1[Array Analysis] --> D1[Complexity Analysis] E1[Memory Constraints] --> F1[Optimization Strategy] B1 --> G1[Comparison Based Sorting] D1 --> H1[Time Complexity O n squared] F1 --> I1[Space Complexity Analysis] G1 --> J1[Bubble Sort Algorithm] H1 --> K1[Quick Sort Algorithm] I1 --> L1[Merge Sort Algorithm] J1 --> M1[Adjacent Element Comparison] K1 --> L1 L1 --> N1[Divide and Conquer] M1 --> O1[Element Swapping] N1 --> P1[Pivot Selection] O1 --> Q1[Sorting Process] P1 --> R1[Partitioning Strategy] Q1 --> S1[Recursive Sorting] R1 --> T1[Sorting Algorithm Result] S1 --> U1[Algorithm Validation] T1 --> V1[Sorted Array Output] U1 --> W1[Sorting Algorithm Output] V1 --> X1[Sorting Algorithm Analysis] W1 --> Y1[Sorting Algorithm Final Result] X1 --> Z1[Sorting Algorithm Analysis Complete] style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#ffd43b,color:#000 style N1 fill:#ffd43b,color:#000 style O1 fill:#ffd43b,color:#000 style P1 fill:#ffd43b,color:#000 style Q1 fill:#ffd43b,color:#000 style R1 fill:#ffd43b,color:#000 style S1 fill:#ffd43b,color:#000 style T1 fill:#ffd43b,color:#000 style U1 fill:#ffd43b,color:#000 style V1 fill:#ffd43b,color:#000 style W1 fill:#ffd43b,color:#000 style X1 fill:#ffd43b,color:#000 style Y1 fill:#ffd43b,color:#000 style Z1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Triggers & Inputs
Algorithm Methods
Sorting Operations
Intermediates
Products
Figure 1. Sorting Algorithms Process. This computer science process visualization demonstrates comparison-based sorting algorithms. The flowchart shows input array and complexity analysis, algorithm methods and selection, sorting operations and comparisons, intermediate results, and final sorted array outputs.

2. Graph Algorithms Process

graph TD A2[Graph Representation] --> B2[Graph Type Analysis] C2[Vertex Edge Analysis] --> D2[Traversal Strategy] E2[Path Finding] --> F2[Algorithm Selection] B2 --> G2[Directed Graph] D2 --> H2[Undirected Graph] F2 --> I2[Weighted Graph] G2 --> J2[Depth First Search] H2 --> K2[Breadth First Search] I2 --> L2[Dijkstra Algorithm] J2 --> M2[Stack Based Traversal] K2 --> L2 L2 --> N2[Queue Based Traversal] M2 --> O2[Priority Queue] N2 --> P2[Shortest Path] O2 --> Q2[Graph Algorithm Process] P2 --> R2[Minimum Spanning Tree] Q2 --> S2[Topological Sorting] R2 --> T2[Graph Algorithm Result] S2 --> U2[Algorithm Validation] T2 --> V2[Graph Analysis Output] U2 --> W2[Graph Algorithm Output] V2 --> X2[Graph Algorithm Analysis] W2 --> Y2[Graph Algorithm Final Result] X2 --> Z2[Graph Algorithm Analysis Complete] style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#ffd43b,color:#000 style N2 fill:#ffd43b,color:#000 style O2 fill:#ffd43b,color:#000 style P2 fill:#ffd43b,color:#000 style Q2 fill:#ffd43b,color:#000 style R2 fill:#ffd43b,color:#000 style S2 fill:#ffd43b,color:#000 style T2 fill:#ffd43b,color:#000 style U2 fill:#ffd43b,color:#000 style V2 fill:#ffd43b,color:#000 style W2 fill:#ffd43b,color:#000 style X2 fill:#ffd43b,color:#000 style Y2 fill:#ffd43b,color:#000 style Z2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Triggers & Inputs
Graph Methods
Traversal Operations
Intermediates
Products
Figure 2. Graph Algorithms Process. This computer science process visualization demonstrates graph traversal and path finding algorithms. The flowchart shows graph representation and vertex analysis, graph methods and traversal strategies, traversal operations and path finding, intermediate results, and final graph algorithm outputs.

3. Dynamic Programming Process

graph TD A3[Problem Analysis] --> B3[Optimal Substructure] C3[Overlapping Subproblems] --> D3[Recursive Formulation] E3[Memoization Strategy] --> F3[Tabulation Method] B3 --> G3[Subproblem Identification] D3 --> H3[Recursive Solution] F3 --> I3[Bottom Up Approach] G3 --> J3[State Definition] H3 --> K3[Top Down Approach] I3 --> L3[Table Construction] J3 --> M3[Transition Function] K3 --> L3 L3 --> N3[Space Optimization] M3 --> O3[Base Case Definition] N3 --> P3[Time Complexity] O3 --> Q3[Dynamic Programming Process] P3 --> R3[Algorithm Validation] Q3 --> S3[Solution Construction] R3 --> T3[Dynamic Programming Result] S3 --> U3[Dynamic Programming Validation] T3 --> V3[Dynamic Programming Parameters] U3 --> W3[Dynamic Programming Output] V3 --> X3[Dynamic Programming Analysis] W3 --> Y3[Dynamic Programming Final Result] X3 --> Z3[Dynamic Programming Analysis Complete] style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#ffd43b,color:#000 style N3 fill:#ffd43b,color:#000 style O3 fill:#ffd43b,color:#000 style P3 fill:#ffd43b,color:#000 style Q3 fill:#ffd43b,color:#000 style R3 fill:#ffd43b,color:#000 style S3 fill:#ffd43b,color:#000 style T3 fill:#ffd43b,color:#000 style U3 fill:#ffd43b,color:#000 style V3 fill:#ffd43b,color:#000 style W3 fill:#ffd43b,color:#000 style X3 fill:#ffd43b,color:#000 style Y3 fill:#ffd43b,color:#000 style Z3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Triggers & Inputs
Dynamic Programming Methods
Optimization Operations
Intermediates
Products
Figure 3. Dynamic Programming Process. This computer science process visualization demonstrates optimal substructure and overlapping subproblems. The flowchart shows problem analysis and subproblem identification, dynamic programming methods and strategies, optimization operations and solution construction, intermediate results, and final dynamic programming outputs.