File size: 10,135 Bytes
d89a8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# coding=utf-8
import torch
import torch.utils.data as data
import torchvision.transforms as transforms

from PIL import Image
from PIL import ImageDraw

import os.path as osp
import numpy as np
import json


class CPDataset(data.Dataset):
    """Dataset for CP-VTON+.
    """

    def __init__(self, opt):
        super(CPDataset, self).__init__()
        # base setting
        self.opt = opt
        self.root = opt.dataroot
        self.datamode = opt.datamode  # train or test or self-defined
        self.stage = opt.stage  # GMM or TOM
        self.data_list = opt.data_list
        self.fine_height = opt.fine_height
        self.fine_width = opt.fine_width
        self.radius = opt.radius
        self.data_path = osp.join(opt.dataroot, opt.datamode)
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

        # load data list
        im_names = []
        c_names = []
        with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
            for line in f.readlines():
                im_name, c_name = line.strip().split()
                im_names.append(im_name)
                c_names.append(c_name)

        self.im_names = im_names
        self.c_names = c_names

    def name(self):
        return "CPDataset"

    def __getitem__(self, index):
        c_name = self.c_names[index]
        im_name = self.im_names[index]
        if self.stage == 'GMM':
            c = Image.open(osp.join(self.data_path, 'cloth', c_name))
            cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name)).convert('L')
        else:
            c = Image.open(osp.join(self.data_path, 'warp-cloth', im_name))    # c_name, if that is used when saved
            cm = Image.open(osp.join(self.data_path, 'warp-mask', im_name)).convert('L')    # c_name, if that is used when saved

        c = self.transform(c)  # [-1,1]
        cm_array = np.array(cm)
        cm_array = (cm_array >= 128).astype(np.float32)
        cm = torch.from_numpy(cm_array)  # [0,1]
        cm.unsqueeze_(0)

        # person image
        im = Image.open(osp.join(self.data_path, 'image', im_name))
        im = self.transform(im)  # [-1,1]

        """
        LIP labels
        
        [(0, 0, 0),    # 0=Background
         (128, 0, 0),  # 1=Hat
         (255, 0, 0),  # 2=Hair
         (0, 85, 0),   # 3=Glove
         (170, 0, 51),  # 4=SunGlasses
         (255, 85, 0),  # 5=UpperClothes
         (0, 0, 85),     # 6=Dress
         (0, 119, 221),  # 7=Coat
         (85, 85, 0),    # 8=Socks
         (0, 85, 85),    # 9=Pants
         (85, 51, 0),    # 10=Jumpsuits
         (52, 86, 128),  # 11=Scarf
         (0, 128, 0),    # 12=Skirt
         (0, 0, 255),    # 13=Face
         (51, 170, 221),  # 14=LeftArm
         (0, 255, 255),   # 15=RightArm
         (85, 255, 170),  # 16=LeftLeg
         (170, 255, 85),  # 17=RightLeg
         (255, 255, 0),   # 18=LeftShoe
         (255, 170, 0)    # 19=RightShoe
         (170, 170, 50)   # 20=Skin/Neck/Chest (Newly added after running dataset_neck_skin_correction.py)
         ]
         """

        # load parsing image
        parse_name = im_name.replace('.jpg', '.png')
        im_parse = Image.open(
            # osp.join(self.data_path, 'image-parse', parse_name)).convert('L')
            osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L')   # updated new segmentation
        parse_array = np.array(im_parse)
        im_mask = Image.open(
            osp.join(self.data_path, 'image-mask', parse_name)).convert('L')
        mask_array = np.array(im_mask)

        # parse_shape = (parse_array > 0).astype(np.float32)  # CP-VTON body shape
        # Get shape from body mask (CP-VTON+)
        parse_shape = (mask_array > 0).astype(np.float32)

        if self.stage == 'GMM':
            parse_head = (parse_array == 1).astype(np.float32) + \
                (parse_array == 4).astype(np.float32) + \
                (parse_array == 13).astype(
                    np.float32)  # CP-VTON+ GMM input (reserved regions)
        else:
            parse_head = (parse_array == 1).astype(np.float32) + \
                (parse_array == 2).astype(np.float32) + \
                (parse_array == 4).astype(np.float32) + \
                (parse_array == 9).astype(np.float32) + \
                (parse_array == 12).astype(np.float32) + \
                (parse_array == 13).astype(np.float32) + \
                (parse_array == 16).astype(np.float32) + \
                (parse_array == 17).astype(
                np.float32)  # CP-VTON+ TOM input (reserved regions)

        parse_cloth = (parse_array == 5).astype(np.float32) + \
            (parse_array == 6).astype(np.float32) + \
            (parse_array == 7).astype(np.float32)    # upper-clothes labels

        # shape downsample
        parse_shape_ori = Image.fromarray((parse_shape*255).astype(np.uint8))
        parse_shape = parse_shape_ori.resize(
            (self.fine_width//16, self.fine_height//16), Image.BILINEAR)
        parse_shape = parse_shape.resize(
            (self.fine_width, self.fine_height), Image.BILINEAR)
        parse_shape_ori = parse_shape_ori.resize(
            (self.fine_width, self.fine_height), Image.BILINEAR)
        shape_ori = self.transform(parse_shape_ori)  # [-1,1]
        shape = self.transform(parse_shape)  # [-1,1]
        phead = torch.from_numpy(parse_head)  # [0,1]
        # phand = torch.from_numpy(parse_hand)  # [0,1]
        pcm = torch.from_numpy(parse_cloth)  # [0,1]

        # upper cloth
        im_c = im * pcm + (1 - pcm)  # [-1,1], fill 1 for other parts
        im_h = im * phead - (1 - phead)  # [-1,1], fill -1 for other parts

        # load pose points
        pose_name = im_name.replace('.jpg', '_keypoints.json')
        with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f:
            pose_label = json.load(f)
            pose_data = pose_label['people'][0]['pose_keypoints']
            pose_data = np.array(pose_data)
            pose_data = pose_data.reshape((-1, 3))

        point_num = pose_data.shape[0]
        pose_map = torch.zeros(point_num, self.fine_height, self.fine_width)
        r = self.radius
        im_pose = Image.new('L', (self.fine_width, self.fine_height))
        pose_draw = ImageDraw.Draw(im_pose)
        for i in range(point_num):
            one_map = Image.new('L', (self.fine_width, self.fine_height))
            draw = ImageDraw.Draw(one_map)
            pointx = pose_data[i, 0]
            pointy = pose_data[i, 1]
            if pointx > 1 and pointy > 1:
                draw.rectangle((pointx-r, pointy-r, pointx +
                                r, pointy+r), 'white', 'white')
                pose_draw.rectangle(
                    (pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
            one_map = self.transform(one_map)
            pose_map[i] = one_map[0]

        # just for visualization
        im_pose = self.transform(im_pose)

        # cloth-agnostic representation
        agnostic = torch.cat([shape, im_h, pose_map], 0)

        if self.stage == 'GMM':
            im_g = Image.open('grid.png')
            im_g = self.transform(im_g)
        else:
            im_g = ''

        pcm.unsqueeze_(0)  # CP-VTON+

        result = {
            'c_name':   c_name,     # for visualization
            'im_name':  im_name,    # for visualization or ground truth
            'cloth':    c,          # for input
            'cloth_mask':     cm,   # for input
            'image':    im,         # for visualization
            'agnostic': agnostic,   # for input
            'parse_cloth': im_c,    # for ground truth
            'shape': shape,         # for visualization
            'head': im_h,           # for visualization
            'pose_image': im_pose,  # for visualization
            'grid_image': im_g,     # for visualization
            'parse_cloth_mask': pcm,     # for CP-VTON+, TOM input
            'shape_ori': shape_ori,     # original body shape without resize
        }

        return result

    def __len__(self):
        return len(self.im_names)


class CPDataLoader(object):
    def __init__(self, opt, dataset):
        super(CPDataLoader, self).__init__()

        if opt.shuffle:
            train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
        else:
            train_sampler = None

        self.data_loader = torch.utils.data.DataLoader(
            dataset, batch_size=opt.batch_size, shuffle=(
                train_sampler is None),
            num_workers=opt.workers, pin_memory=True, sampler=train_sampler)
        self.dataset = dataset
        self.data_iter = self.data_loader.__iter__()

    def next_batch(self):
        try:
            batch = self.data_iter.__next__()
        except StopIteration:
            self.data_iter = self.data_loader.__iter__()
            batch = self.data_iter.__next__()

        return batch


if __name__ == "__main__":
    print("Check the dataset for geometric matching module!")

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataroot", default="data")
    parser.add_argument("--datamode", default="train")
    parser.add_argument("--stage", default="GMM")
    parser.add_argument("--data_list", default="train_pairs.txt")
    parser.add_argument("--fine_width", type=int, default=192)
    parser.add_argument("--fine_height", type=int, default=256)
    parser.add_argument("--radius", type=int, default=3)
    parser.add_argument("--shuffle", action='store_true',
                        help='shuffle input data')
    parser.add_argument('-b', '--batch-size', type=int, default=4)
    parser.add_argument('-j', '--workers', type=int, default=1)

    opt = parser.parse_args()
    dataset = CPDataset(opt)
    data_loader = CPDataLoader(opt, dataset)

    print('Size of the dataset: %05d, dataloader: %04d'
          % (len(dataset), len(data_loader.data_loader)))
    first_item = dataset.__getitem__(0)
    first_batch = data_loader.next_batch()

    from IPython import embed
    embed()