Spaces:
Sleeping
Sleeping
File size: 16,658 Bytes
9862b96 ce16d6e 9862b96 7335794 5bff76a 7335794 5bff76a 960b661 5bff76a 7335794 5bff76a 7335794 9862b96 5bff76a 9862b96 5bff76a 3ecccc5 9862b96 5bff76a 9862b96 5bff76a 9862b96 5bff76a 3ecccc5 9862b96 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 5bff76a 9862b96 dfd5718 9862b96 3ecccc5 9862b96 e6d6add 9862b96 3ecccc5 9862b96 5bff76a 7335794 3ecccc5 bfbe0c2 e6d6add bfbe0c2 3ecccc5 e6d6add 3f625d4 e6d6add 5bff76a bfbe0c2 3f625d4 e6d6add 9862b96 e6d6add 9862b96 3ecccc5 bfbe0c2 3ecccc5 e6d6add 3f625d4 e6d6add 3ecccc5 e6d6add bfbe0c2 e6d6add 5bff76a e6d6add 3ecccc5 e6d6add bfbe0c2 e6d6add 3f625d4 e6d6add 5bff76a e6d6add 5bff76a e6d6add 0316ce2 e6d6add 427172d e6d6add 0316ce2 e6d6add 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 5bff76a 9862b96 5bff76a 9862b96 3ecccc5 5bff76a 9862b96 5bff76a 9862b96 3ecccc5 9862b96 5bff76a 9862b96 3ecccc5 9862b96 5bff76a 9862b96 3ecccc5 5bff76a 9862b96 5bff76a 3ecccc5 7335794 3ecccc5 7335794 3ecccc5 5bff76a 3ecccc5 9862b96 3ecccc5 9862b96 ce16d6e 9862b96 960b661 9862b96 960b661 5bff76a 427172d 15e6502 427172d 0316ce2 427172d 0316ce2 427172d 15e6502 427172d 0316ce2 427172d 15e6502 427172d 15e6502 3f625d4 427172d 15e6502 5bff76a aa8b396 3f625d4 427172d 5bff76a 3f625d4 5bff76a 0316ce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np
class Options:
def __init__(self):
# Image dimensions
self.fine_height = 256
self.fine_width = 192
# GMM parameters
self.grid_size = 5
self.input_nc = 22 # For extractionA
self.input_nc_B = 1 # For extractionB
# TOM parameters
self.tom_input_nc = 26 # 3(agnostic) + 3(warped) + 1(mask) + 19(features)
self.tom_output_nc = 4 # 3(rendered) + 1(composite mask)
# Training settings
self.use_dropout = False
self.norm_layer = nn.BatchNorm2d
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print(f'initialization method [{init_type}]')
net.apply(weights_init_normal)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
super(FeatureExtraction, self).__init__()
# Build feature extraction layers
layers = [
nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1),
nn.ReLU(True),
norm_layer(ngf)
]
for i in range(n_layers):
in_channels = min(2**i * ngf, 512)
out_channels = min(2**(i+1) * ngf, 512)
layers += [
nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1),
nn.ReLU(True),
norm_layer(out_channels)
]
# Final processing blocks
layers += [
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
norm_layer(512),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(True)
]
self.model = nn.Sequential(*layers)
init_weights(self.model)
def forward(self, x):
return self.model(x)
class FeatureL2Norm(nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b, c, h, w = feature_A.size()
feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
feature_mul = torch.bmm(feature_B, feature_A)
return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512, output_dim=6):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.conv(x)
x = x.contiguous().view(x.size(0), -1)
x = self.linear(x)
return self.tanh(x)
# networks.py - TpsGridGen class replacement
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, grid_size=5):
super(TpsGridGen, self).__init__()
self.out_h = out_h
self.out_w = out_w
self.grid_size = grid_size
self.N = grid_size * grid_size
# Create grid in numpy
self.grid = np.zeros([self.out_h, self.out_w, 3], dtype=np.float32)
# Sampling grid with dim-0 (Y) and dim-1 (X) coords
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
self.grid_X = torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3) # [1, H, W, 1]
self.grid_Y = torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3) # [1, H, W, 1]
# Register buffers
self.register_buffer('grid_X_base', self.grid_X)
self.register_buffer('grid_Y_base', self.grid_Y)
# Initialize regular grid for control points
axis_coords = np.linspace(-1, 1, grid_size)
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = np.reshape(P_X, (-1, 1)) # [N, 1]
P_Y = np.reshape(P_Y, (-1, 1)) # [N, 1]
self.P_X = torch.FloatTensor(P_X)
self.P_Y = torch.FloatTensor(P_Y)
self.register_buffer('P_X_base', self.P_X)
self.register_buffer('P_Y_base', self.P_Y)
# Compute inverse matrix L^-1
Li = self.compute_L_inverse(P_X, P_Y)
self.register_buffer('Li', torch.FloatTensor(Li))
def compute_L_inverse(self, X, Y):
N = X.shape[0] # num of points (along dim 0)
# Construct matrix K
Xmat = np.tile(X, (1, N))
Ymat = np.tile(Y, (1, N))
P_dist_squared = np.power(Xmat - Xmat.T, 2) + np.power(Ymat - Ymat.T, 2)
P_dist_squared[P_dist_squared == 0] = 1 # make diagonal 1 to avoid NaN in log computation
K = P_dist_squared * np.log(P_dist_squared)
# Construct matrix L
O = np.ones((N, 1))
Z = np.zeros((3, 3))
P = np.concatenate((O, X, Y), axis=1)
L = np.concatenate((np.concatenate((K, P), axis=1),
np.concatenate((P.T, Z), axis=1)), axis=0)
Li = np.linalg.inv(L)
return Li
def forward(self, theta):
batch_size = theta.size(0)
device = theta.device
# Split theta into point coordinates
Q_X = theta[:, :self.N].view(batch_size, self.N, 1, 1)
Q_Y = theta[:, self.N:].view(batch_size, self.N, 1, 1)
Q_X = Q_X + self.P_X_base.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
# Get spatial dimensions of points
points = torch.cat((self.grid_X_base.expand(batch_size, -1, -1, -1),
self.grid_Y_base.expand(batch_size, -1, -1, -1)), 3)
# Repeat pre-defined control points along spatial dimensions of points to be transformed
P_X = self.P_X_base.expand(batch_size, 1, 1, self.N)
P_Y = self.P_Y_base.expand(batch_size, 1, 1, self.N)
# Compute weights for non-linear part
W_X = torch.bmm(self.Li[:self.N, :self.N].unsqueeze(0).expand(batch_size, -1, -1), Q_X.squeeze(-1))
W_Y = torch.bmm(self.Li[:self.N, :self.N].unsqueeze(0).expand(batch_size, -1, -1), Q_Y.squeeze(-1))
# Reshape to [B, H, W, N]
W_X = W_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, self.out_h, self.out_w, 1, 1)
W_Y = W_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, self.out_h, self.out_w, 1, 1)
# Compute weights for affine part
A_X = torch.bmm(self.Li[self.N:, :self.N].unsqueeze(0).expand(batch_size, -1, -1), Q_X.squeeze(-1))
A_Y = torch.bmm(self.Li[self.N:, :self.N].unsqueeze(0).expand(batch_size, -1, -1), Q_Y.squeeze(-1))
# Reshape to [B, H, W, 1, 3]
A_X = A_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, self.out_h, self.out_w, 1, 1)
A_Y = A_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, self.out_h, self.out_w, 1, 1)
# Compute distance P_i - (grid_X, grid_Y)
points_X = points[:, :, :, 0].unsqueeze(3) # [B, H, W, 1]
points_Y = points[:, :, :, 1].unsqueeze(3) # [B, H, W, 1]
delta_X = points_X - P_X
delta_Y = points_Y - P_Y
# Compute U (radial basis function)
dist_squared = torch.pow(delta_X, 2) + torch.pow(delta_Y, 2)
dist_squared[dist_squared == 0] = 1 # avoid NaN in log computation
U = dist_squared * torch.log(dist_squared)
# Compute non-affine part
points_X_prime = torch.sum(torch.mul(W_X, U), dim=4)
points_Y_prime = torch.sum(torch.mul(W_Y, U), dim=4)
# Compute affine part
A_X0 = A_X[:, :, :, :, 0]
A_X1 = A_X[:, :, :, :, 1]
A_X2 = A_X[:, :, :, :, 2]
A_Y0 = A_Y[:, :, :, :, 0]
A_Y1 = A_Y[:, :, :, :, 1]
A_Y2 = A_Y[:, :, :, :, 2]
points_X_prime += A_X0 + torch.mul(A_X1, points_X.squeeze(3)) + torch.mul(A_X2, points_Y.squeeze(3))
points_Y_prime += A_Y0 + torch.mul(A_Y1, points_X.squeeze(3)) + torch.mul(A_Y2, points_Y.squeeze(3))
return torch.cat((points_X_prime.unsqueeze(3), points_Y_prime.unsqueeze(3)), 3)
class GMM(nn.Module):
def __init__(self, opt=None):
super(GMM, self).__init__()
if opt is None:
opt = Options()
self.extractionA = FeatureExtraction(opt.input_nc)
self.extractionB = FeatureExtraction(opt.input_nc_B)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False,
norm_layer=nn.InstanceNorm2d, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.InstanceNorm2d, use_dropout=False):
super(UnetGenerator, self).__init__()
# Build UNet structure
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None,
norm_layer=norm_layer, innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(
ngf, ngf * 2, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block,
outermost=True, norm_layer=norm_layer)
def forward(self, input):
return self.model(input)
class TOM(nn.Module):
def __init__(self, opt=None):
super(TOM, self).__init__()
if opt is None:
opt = Options()
self.unet = UnetGenerator(
input_nc=opt.tom_input_nc,
output_nc=opt.tom_output_nc,
num_downs=6,
norm_layer=nn.InstanceNorm2d
)
def forward(self, x):
output = self.unet(x)
p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
return p_rendered, m_composite
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
def load_checkpoint(model, checkpoint_path, strict=True):
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
# Create a new state dict that matches our model architecture
new_state_dict = {}
for key, value in state_dict.items():
# Handle name changes
new_key = key
if 'gridGen' in key:
# Map old parameter names to new ones
if 'P_X' in key and 'base' not in key:
new_key = key.replace('P_X', 'P_X_base')
elif 'P_Y' in key and 'base' not in key:
new_key = key.replace('P_Y', 'P_Y_base')
elif 'grid_X' in key and 'base' not in key:
new_key = key.replace('grid_X', 'grid_X_base')
elif 'grid_Y' in key and 'base' not in key:
new_key = key.replace('grid_Y', 'grid_Y_base')
# Only include keys that exist in the current model
if new_key in model.state_dict():
new_state_dict[new_key] = value
# Add missing TPS parameters if needed
tps_params = ['gridGen.P_X_base', 'gridGen.P_Y_base', 'gridGen.Li',
'gridGen.grid_X_base', 'gridGen.grid_Y_base']
for param in tps_params:
if param not in new_state_dict and hasattr(model, 'gridGen'):
if param in model.state_dict():
print(f"Initializing missing TPS parameter: {param}")
new_state_dict[param] = model.state_dict()[param]
# Load the state dict
model.load_state_dict(new_state_dict, strict=False)
# Print warnings
model_keys = set(model.state_dict().keys())
loaded_keys = set(new_state_dict.keys())
missing = model_keys - loaded_keys
unexpected = set(state_dict.keys()) - set(new_state_dict.keys())
if missing:
print(f"Missing keys: {sorted(missing)}")
if unexpected:
print(f"Unexpected keys: {sorted(unexpected)}")
return model |