Spaces:
Sleeping
Sleeping
File size: 9,228 Bytes
9862b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from networks import GicLoss, GMM, UnetGenerator, VGGLoss, load_checkpoint, save_checkpoint
from tensorboardX import SummaryWriter
from visualization import board_add_image, board_add_images
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--name", default="GMM")
# parser.add_argument("--name", default="TOM")
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=1)
parser.add_argument('-b', '--batch-size', type=int, default=4)
parser.add_argument("--dataroot", default="data")
parser.add_argument("--datamode", default="train")
parser.add_argument("--stage", default="GMM")
# parser.add_argument("--stage", default="TOM")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=192)
parser.add_argument("--fine_height", type=int, default=256)
parser.add_argument("--radius", type=int, default=5)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--lr', type=float, default=0.0001,
help='initial learning rate for adam')
parser.add_argument('--tensorboard_dir', type=str,
default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str,
default='checkpoints', help='save checkpoint infos')
parser.add_argument('--checkpoint', type=str, default='',
help='model checkpoint for initialization')
parser.add_argument("--display_count", type=int, default=20)
parser.add_argument("--save_count", type=int, default=5000)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true',
help='shuffle input data')
opt = parser.parse_args()
return opt
def train_gmm(opt, train_loader, model, board):
model.cuda()
model.train()
# criterion
criterionL1 = nn.L1Loss()
gicloss = GicLoss(opt)
# optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=opt.lr, betas=(0.5, 0.999))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 1.0 -
max(0, step - opt.keep_step) / float(opt.decay_step + 1))
for step in range(opt.keep_step + opt.decay_step):
iter_start_time = time.time()
inputs = train_loader.next_batch()
im = inputs['image'].cuda()
im_pose = inputs['pose_image'].cuda()
im_h = inputs['head'].cuda()
shape = inputs['shape'].cuda()
agnostic = inputs['agnostic'].cuda()
c = inputs['cloth'].cuda()
cm = inputs['cloth_mask'].cuda()
im_c = inputs['parse_cloth'].cuda()
im_g = inputs['grid_image'].cuda()
grid, theta = model(agnostic, cm) # can be added c too for new training
warped_cloth = F.grid_sample(c, grid, padding_mode='border')
warped_mask = F.grid_sample(cm, grid, padding_mode='zeros')
warped_grid = F.grid_sample(im_g, grid, padding_mode='zeros')
visuals = [[im_h, shape, im_pose],
[c, warped_cloth, im_c],
[warped_grid, (warped_cloth+im)*0.5, im]]
# loss for warped cloth
Lwarp = criterionL1(warped_cloth, im_c) # changing to previous code as it corresponds to the working code
# Actual loss function as in the paper given below (comment out previous line and uncomment below to train as per the paper)
# Lwarp = criterionL1(warped_mask, cm) # loss for warped mask thanks @xuxiaochun025 for fixing the git code.
# grid regularization loss
Lgic = gicloss(grid)
# 200x200 = 40.000 * 0.001
Lgic = Lgic / (grid.shape[0] * grid.shape[1] * grid.shape[2])
loss = Lwarp + 40 * Lgic # total GMM loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step+1) % opt.display_count == 0:
board_add_images(board, 'combine', visuals, step+1)
board.add_scalar('loss', loss.item(), step+1)
board.add_scalar('40*Lgic', (40*Lgic).item(), step+1)
board.add_scalar('Lwarp', Lwarp.item(), step+1)
t = time.time() - iter_start_time
print('step: %8d, time: %.3f, loss: %4f, (40*Lgic): %.8f, Lwarp: %.6f' %
(step+1, t, loss.item(), (40*Lgic).item(), Lwarp.item()), flush=True)
if (step+1) % opt.save_count == 0:
save_checkpoint(model, os.path.join(
opt.checkpoint_dir, opt.name, 'step_%06d.pth' % (step+1)))
def train_tom(opt, train_loader, model, board):
model.cuda()
model.train()
# criterion
criterionL1 = nn.L1Loss()
criterionVGG = VGGLoss()
criterionMask = nn.L1Loss()
# optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=opt.lr, betas=(0.5, 0.999))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 1.0 -
max(0, step - opt.keep_step) / float(opt.decay_step + 1))
for step in range(opt.keep_step + opt.decay_step):
iter_start_time = time.time()
inputs = train_loader.next_batch()
im = inputs['image'].cuda()
im_pose = inputs['pose_image']
im_h = inputs['head']
shape = inputs['shape']
agnostic = inputs['agnostic'].cuda()
c = inputs['cloth'].cuda()
cm = inputs['cloth_mask'].cuda()
pcm = inputs['parse_cloth_mask'].cuda()
# outputs = model(torch.cat([agnostic, c], 1)) # CP-VTON
outputs = model(torch.cat([agnostic, c, cm], 1)) # CP-VTON+
p_rendered, m_composite = torch.split(outputs, 3, 1)
p_rendered = F.tanh(p_rendered)
m_composite = F.sigmoid(m_composite)
p_tryon = c * m_composite + p_rendered * (1 - m_composite)
"""visuals = [[im_h, shape, im_pose],
[c, cm*2-1, m_composite*2-1],
[p_rendered, p_tryon, im]]""" # CP-VTON
visuals = [[im_h, shape, im_pose],
[c, pcm*2-1, m_composite*2-1],
[p_rendered, p_tryon, im]] # CP-VTON+
loss_l1 = criterionL1(p_tryon, im)
loss_vgg = criterionVGG(p_tryon, im)
# loss_mask = criterionMask(m_composite, cm) # CP-VTON
loss_mask = criterionMask(m_composite, pcm) # CP-VTON+
loss = loss_l1 + loss_vgg + loss_mask
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step+1) % opt.display_count == 0:
board_add_images(board, 'combine', visuals, step+1)
board.add_scalar('metric', loss.item(), step+1)
board.add_scalar('L1', loss_l1.item(), step+1)
board.add_scalar('VGG', loss_vgg.item(), step+1)
board.add_scalar('MaskL1', loss_mask.item(), step+1)
t = time.time() - iter_start_time
print('step: %8d, time: %.3f, loss: %.4f, l1: %.4f, vgg: %.4f, mask: %.4f'
% (step+1, t, loss.item(), loss_l1.item(),
loss_vgg.item(), loss_mask.item()), flush=True)
if (step+1) % opt.save_count == 0:
save_checkpoint(model, os.path.join(
opt.checkpoint_dir, opt.name, 'step_%06d.pth' % (step+1)))
def main():
opt = get_opt()
print(opt)
print("Start to train stage: %s, named: %s!" % (opt.stage, opt.name))
# create dataset
train_dataset = CPDataset(opt)
# create dataloader
train_loader = CPDataLoader(opt, train_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(logdir=os.path.join(opt.tensorboard_dir, opt.name))
# create model & train & save the final checkpoint
if opt.stage == 'GMM':
model = GMM(opt)
if not opt.checkpoint == '' and os.path.exists(opt.checkpoint):
load_checkpoint(model, opt.checkpoint)
train_gmm(opt, train_loader, model, board)
save_checkpoint(model, os.path.join(
opt.checkpoint_dir, opt.name, 'gmm_final.pth'))
elif opt.stage == 'TOM':
# model = UnetGenerator(25, 4, 6, ngf=64, norm_layer=nn.InstanceNorm2d) # CP-VTON
model = UnetGenerator(
26, 4, 6, ngf=64, norm_layer=nn.InstanceNorm2d) # CP-VTON+
if not opt.checkpoint == '' and os.path.exists(opt.checkpoint):
load_checkpoint(model, opt.checkpoint)
train_tom(opt, train_loader, model, board)
save_checkpoint(model, os.path.join(
opt.checkpoint_dir, opt.name, 'tom_final.pth'))
else:
raise NotImplementedError('Model [%s] is not implemented' % opt.stage)
print('Finished training %s, named: %s!' % (opt.stage, opt.name))
if __name__ == "__main__":
main()
|