Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from PIL import Image | |
import numpy as np | |
from networks import GMM, TOM, load_checkpoint, Options | |
import torchvision.transforms.functional as TF | |
def prepare_inputs(dress_path, design_path, height=256, width=192): | |
"""Prepare and normalize input images""" | |
transform = transforms.Compose([ | |
transforms.Resize((height, width)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
dress_img = Image.open(dress_path).convert('RGB') | |
design_img = Image.open(design_path).convert('RGB') | |
dress_tensor = transform(dress_img).unsqueeze(0) | |
design_tensor = transform(design_img).unsqueeze(0) | |
# Create mask (assume design has transparent background) | |
design_arr = np.array(design_img) | |
if design_arr.shape[2] == 4: # Has alpha channel | |
mask = (design_arr[:, :, 3] > 0).astype(np.float32) | |
else: | |
mask = np.ones((design_arr.shape[0], design_arr.shape[1]), dtype=np.float32) | |
mask_img = Image.fromarray((mask * 255).astype(np.uint8)) | |
mask_tensor = TF.to_tensor(TF.resize(mask_img, (height, width))).unsqueeze(0) | |
return dress_tensor, design_tensor, mask_tensor | |
def create_agnostic(dress_tensor): | |
"""Create agnostic representation of dress""" | |
return dress_tensor.clone() | |
def run_design_warp_on_dress(dress_path, design_path, gmm_ckpt, tom_ckpt, output_dir): | |
os.makedirs(output_dir, exist_ok=True) | |
# Prepare inputs | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
dress_tensor, design_tensor, design_mask = prepare_inputs(dress_path, design_path) | |
agnostic = create_agnostic(dress_tensor) | |
# Initialize models | |
opt = Options() | |
gmm = GMM(opt).to(device) | |
tom = TOM(opt).to(device) | |
# Load checkpoints | |
load_checkpoint(gmm, gmm_ckpt) | |
load_checkpoint(tom, tom_ckpt) | |
# Move tensors to device | |
agnostic = agnostic.to(device) | |
design_tensor = design_tensor.to(device) | |
design_mask = design_mask.to(device) | |
# GMM Processing | |
with torch.no_grad(): | |
gmm.eval() | |
grid, _ = gmm(agnostic, design_mask) | |
warped_design = F.grid_sample(design_tensor, grid, padding_mode='border', align_corners=True) | |
warped_mask = F.grid_sample(design_mask, grid, padding_mode='zeros', align_corners=True) | |
# TOM Processing | |
with torch.no_grad(): | |
tom.eval() | |
# Prepare TOM input: [agnostic, warped_design, warped_mask] | |
tom_input = torch.cat([agnostic, warped_design, warped_mask], dim=1) | |
p_rendered, m_composite = tom(tom_input) | |
# Final composition | |
tryon = warped_design * m_composite + p_rendered * (1 - m_composite) | |
# Save output | |
tryon = tryon.squeeze().permute(1, 2, 0).cpu().numpy() | |
tryon = (tryon * 0.5 + 0.5) * 255 | |
tryon = tryon.clip(0, 255).astype(np.uint8) | |
output_path = os.path.join(output_dir, "warped_design.jpg") | |
Image.fromarray(tryon).save(output_path) | |
return output_path |