import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image import torch # Load the BLIP model and processor processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def generate_caption(image): image = image.convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): output = model.generate(**inputs) caption = processor.decode(output[0], skip_special_tokens=True) return caption # Gradio interface interface = gr.Interface( fn=generate_caption, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Textbox(label="Generated Caption"), title="📸 Image Captioning", description="Upload an image and get a descriptive caption using this model.", allow_flagging="never" ) if __name__ == "__main__": interface.launch()