File size: 6,383 Bytes
b5839d1
98d80f4
 
 
b5839d1
98d80f4
 
 
b5839d1
98d80f4
b5839d1
98d80f4
 
 
 
 
 
 
 
 
 
b5839d1
98d80f4
b5839d1
98d80f4
 
 
 
b5839d1
98d80f4
 
b5839d1
98d80f4
 
b5839d1
98d80f4
 
b5839d1
98d80f4
 
 
 
b5839d1
98d80f4
b5839d1
98d80f4
 
 
 
 
b5839d1
98d80f4
 
 
b5839d1
98d80f4
 
 
b5839d1
98d80f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5839d1
 
98d80f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
#import spaces 
import torch 
from PIL import Image
import gc

if torch.backends.mps.is_available():
    DEVICE = "mps"
    torch.mps.empty_cache()
    gc.collect()
elif torch.cuda.is_available():
    DEVICE = "cuda"
    torch.cuda.empty_cache()
    gc.collect()
else:
    DEVICE = "cpu"

print(f"DEVICE={DEVICE}")

#edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
#normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
edit_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl.safetensors")

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

EDMEulerScheduler.set_timesteps = set_timesteps_patched

pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
    edit_file, num_in_channels=8
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to(DEVICE)

pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_normal.to(DEVICE)

#@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
    return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0]

#@spaces.GPU
def run_edit(image, prompt, resolution, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
    #resolution = 1024
    print(f"width={image.width}, height={image.height}")
    image.thumbnail((resolution, resolution), Image.Resampling.LANCZOS)
    #image.resize((resolution, resolution))
    #return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
    print(f"width={image.width}, height={image.height}")
    img = pipe_edit(prompt=prompt,image=image,height=image.height,width=image.width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
    if DEVICE == "cuda":
        torch.cuda.empty_cache()
        gc.collect()
    elif DEVICE == "mps":
        torch.mps.empty_cache()
        gc.collect()
    return img
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
with gr.Blocks(css=css) as demo:
    gr.Markdown('''# CosXL demo
    Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
    ''')
    with gr.Tab("CosXL Edit"):
      with gr.Group():
          image_edit = gr.Image(label="Image you would like to edit", type="pil")
          prompt_edit = gr.Textbox(label="Prompt", scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
          size_edit = gr.Number(label="Size", value=1024, maximum=1024, minimum=512, precision=0)
          button_edit = gr.Button("Generate", min_width=120)
          output_edit = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_edit = gr.Textbox(label="Negative Prompt")
            guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
      gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit, size_edit], outputs=[output_edit], cache_examples=False)
    with gr.Tab("CosXL"):
      with gr.Group():
          with gr.Row():
            prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
            button_normal = gr.Button("Generate", min_width=120)
          output_normal = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_normal = gr.Textbox(label="Negative Prompt")
            guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
      gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=False) 
    button_edit.click(
        
    )
    gr.on(
        triggers=[
            button_normal.click,
            prompt_normal.submit
        ],
        fn=run_normal,
        inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
        outputs=[output_normal],
    )
    gr.on(
        triggers=[
            button_edit.click,
            prompt_edit.submit
        ],
        fn=run_edit,
        inputs=[image_edit, prompt_edit, size_edit, negative_prompt_edit, guidance_scale_edit],
        outputs=[output_edit]
    )
if __name__ == "__main__":
    #demo.launch(share=True)
    demo.launch()