Spaces:
Runtime error
Runtime error
File size: 6,585 Bytes
d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 7ebcf88 d26fcbb 1f48b27 d26fcbb 1f48b27 7ebcf88 d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 1f48b27 7ebcf88 d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 4d169f6 d26fcbb 1f48b27 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 d26fcbb 7ebcf88 4d169f6 7ebcf88 d26fcbb 7ebcf88 4d169f6 d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 1f48b27 d26fcbb 7ebcf88 d26fcbb 7ebcf88 4d169f6 d26fcbb 7ebcf88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from optimum.intel import ipex
# Use Intel Extension for PyTorch for CPU optimization
device = "cpu"
# Load the pipeline with optimizations for CPU inference
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo",
use_safetensors=True
)
pipe = pipe.to(device)
# Optimize the pipeline using Intel Extension for PyTorch
ipex.optimize(pipe.unet, dtype=torch.float32) # Optimized for Intel CPUs
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Front view prompt generation and inference
front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
front_image = pipe(
prompt=front_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Back view prompt generation and inference
back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
back_image = pipe(
prompt=back_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return front_image, back_image, seed
examples = [
["red", "t-shirt", "yellow stripes", "polka dots"],
["blue", "hoodie", "minimalist", "abstract art"],
["red", "sweat shirt", "geometric design", "plain"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on CPU (Optimized).
""")
with gr.Row():
prompt_part1 = gr.Textbox(
value="a single",
label="Prompt Part 1",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part1",
visible=False,
)
prompt_part2 = gr.Textbox(
label="color",
show_label=False,
max_lines=1,
placeholder="color (e.g., color category)",
container=False,
)
prompt_part3 = gr.Textbox(
label="dress_type",
show_label=False,
max_lines=1,
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
container=False,
)
prompt_part4_front = gr.Textbox(
label="front design",
show_label=False,
max_lines=1,
placeholder="front design",
container=False,
)
prompt_part4_back = gr.Textbox(
label="back design",
show_label=False,
max_lines=1,
placeholder="back design",
container=False,
)
prompt_part5 = gr.Textbox(
value="hanging on the plain wall",
label="Prompt Part 5",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part5",
visible=False,
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
run_button = gr.Button("Run", scale=0)
front_result = gr.Image(label="Front View Result", show_label=False)
back_result = gr.Image(label="Back View Result", show_label=False)
seed_result = gr.Textbox(label="Seed Used", show_label=False, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Default value optimized for accuracy and speed
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12, # Reduced steps for faster execution
step=1,
value=8, # Balanced between speed and quality
)
gr.Examples(
examples=examples,
inputs=[prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back]
)
run_button.click(
fn=infer,
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[front_result, back_result, seed_result]
)
demo.queue().launch() |