File size: 6,585 Bytes
d26fcbb
 
 
 
 
1f48b27
d26fcbb
1f48b27
 
d26fcbb
1f48b27
 
 
 
 
 
 
 
 
d26fcbb
 
 
 
7ebcf88
d26fcbb
 
 
1f48b27
d26fcbb
1f48b27
7ebcf88
d26fcbb
1f48b27
d26fcbb
1f48b27
 
 
d26fcbb
 
 
 
1f48b27
7ebcf88
d26fcbb
1f48b27
d26fcbb
1f48b27
 
 
d26fcbb
 
 
 
4d169f6
d26fcbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f48b27
d26fcbb
 
 
 
7ebcf88
 
 
 
 
 
 
 
 
 
 
 
 
d26fcbb
7ebcf88
d26fcbb
 
 
7ebcf88
 
 
d26fcbb
7ebcf88
d26fcbb
 
 
7ebcf88
 
 
d26fcbb
7ebcf88
d26fcbb
 
 
7ebcf88
 
 
d26fcbb
7ebcf88
d26fcbb
 
 
7ebcf88
 
 
 
 
 
 
 
 
4d169f6
 
 
 
 
 
 
7ebcf88
 
d26fcbb
 
7ebcf88
 
4d169f6
 
d26fcbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f48b27
d26fcbb
 
 
 
 
1f48b27
d26fcbb
1f48b27
d26fcbb
 
 
 
7ebcf88
d26fcbb
 
 
 
7ebcf88
4d169f6
d26fcbb
 
7ebcf88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from optimum.intel import ipex

# Use Intel Extension for PyTorch for CPU optimization
device = "cpu"

# Load the pipeline with optimizations for CPU inference
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/sdxl-turbo", 
    use_safetensors=True
)
pipe = pipe.to(device)

# Optimize the pipeline using Intel Extension for PyTorch
ipex.optimize(pipe.unet, dtype=torch.float32)  # Optimized for Intel CPUs

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Front view prompt generation and inference
    front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}"
    front_image = pipe(
        prompt=front_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]
    
    # Back view prompt generation and inference
    back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}"
    back_image = pipe(
        prompt=back_prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]
    
    return front_image, back_image, seed

examples = [
    ["red", "t-shirt", "yellow stripes", "polka dots"],
    ["blue", "hoodie", "minimalist", "abstract art"],
    ["red", "sweat shirt", "geometric design", "plain"],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on CPU (Optimized).
        """)
        
        with gr.Row():
            
            prompt_part1 = gr.Textbox(
                value="a single", 
                label="Prompt Part 1",
                show_label=False,
                interactive=False,
                container=False,
                elem_id="prompt_part1",
                visible=False,
            )
            
            prompt_part2 = gr.Textbox(
                label="color",
                show_label=False,
                max_lines=1,
                placeholder="color (e.g., color category)",
                container=False,
            )
            
            prompt_part3 = gr.Textbox(
                label="dress_type",
                show_label=False,
                max_lines=1,
                placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
                container=False,
            )
            
            prompt_part4_front = gr.Textbox(
                label="front design",
                show_label=False,
                max_lines=1,
                placeholder="front design",
                container=False,
            )

            prompt_part4_back = gr.Textbox(
                label="back design",
                show_label=False,
                max_lines=1,
                placeholder="back design",
                container=False,
            )
            
            prompt_part5 = gr.Textbox(
                value="hanging on the plain wall", 
                label="Prompt Part 5",
                show_label=False,
                interactive=False,
                container=False,
                elem_id="prompt_part5",
                visible=False,
            )

            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            
            run_button = gr.Button("Run", scale=0)
        
        front_result = gr.Image(label="Front View Result", show_label=False)
        back_result = gr.Image(label="Back View Result", show_label=False)
        seed_result = gr.Textbox(label="Seed Used", show_label=False, interactive=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,  # Default value optimized for accuracy and speed
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,  # Reduced steps for faster execution
                    step=1,
                    value=8,  # Balanced between speed and quality
                )
        
        gr.Examples(
            examples=examples,
            inputs=[prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back]
        )

    run_button.click(
        fn=infer,
        inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[front_result, back_result, seed_result]
    )

demo.queue().launch()