import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from optimum.intel import ipex # Use Intel Extension for PyTorch for CPU optimization device = "cpu" # Load the pipeline with optimizations for CPU inference pipe = DiffusionPipeline.from_pretrained( "stabilityai/sdxl-turbo", use_safetensors=True ) pipe = pipe.to(device) # Optimize the pipeline using Intel Extension for PyTorch ipex.optimize(pipe.unet, dtype=torch.float32) # Optimized for Intel CPUs MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt_part1, color, dress_type, front_design, back_design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Front view prompt generation and inference front_prompt = f"front view of {prompt_part1} {color} colored plain {dress_type} with {front_design} design, {prompt_part5}" front_image = pipe( prompt=front_prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # Back view prompt generation and inference back_prompt = f"back view of {prompt_part1} {color} colored plain {dress_type} with {back_design} design, {prompt_part5}" back_image = pipe( prompt=back_prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return front_image, back_image, seed examples = [ ["red", "t-shirt", "yellow stripes", "polka dots"], ["blue", "hoodie", "minimalist", "abstract art"], ["red", "sweat shirt", "geometric design", "plain"], ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on CPU (Optimized). """) with gr.Row(): prompt_part1 = gr.Textbox( value="a single", label="Prompt Part 1", show_label=False, interactive=False, container=False, elem_id="prompt_part1", visible=False, ) prompt_part2 = gr.Textbox( label="color", show_label=False, max_lines=1, placeholder="color (e.g., color category)", container=False, ) prompt_part3 = gr.Textbox( label="dress_type", show_label=False, max_lines=1, placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)", container=False, ) prompt_part4_front = gr.Textbox( label="front design", show_label=False, max_lines=1, placeholder="front design", container=False, ) prompt_part4_back = gr.Textbox( label="back design", show_label=False, max_lines=1, placeholder="back design", container=False, ) prompt_part5 = gr.Textbox( value="hanging on the plain wall", label="Prompt Part 5", show_label=False, interactive=False, container=False, elem_id="prompt_part5", visible=False, ) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) run_button = gr.Button("Run", scale=0) front_result = gr.Image(label="Front View Result", show_label=False) back_result = gr.Image(label="Back View Result", show_label=False) seed_result = gr.Textbox(label="Seed Used", show_label=False, interactive=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, # Default value optimized for accuracy and speed ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, # Reduced steps for faster execution step=1, value=8, # Balanced between speed and quality ) gr.Examples( examples=examples, inputs=[prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back] ) run_button.click( fn=infer, inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4_front, prompt_part4_back, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[front_result, back_result, seed_result] ) demo.queue().launch()