import gradio as gr import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET import matplotlib.colors as mcolors # Load U²-Net model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) state_dict = torch.load(model_path, map_location=torch.device("cpu")) state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} model.load_state_dict(state_dict) model.eval() # Util to get BGR color from name def get_bgr_from_color_name(color_name): try: rgb = mcolors.to_rgb(color_name.lower()) return tuple(int(255 * c) for c in rgb[::-1]) # Convert to BGR except: return (0, 0, 255) # Default to red # Mask refinement def refine_mask(mask): close_kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) erode_kernel = np.ones((3, 3), np.uint8) mask = cv2.erode(mask, erode_kernel, iterations=1) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) return cv2.GaussianBlur(mask, (5, 5), 1.5) # U²-Net segmentation def segment_dress(image_np): transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() output = (output - output.min()) / (output.max() - output.min() + 1e-8) adaptive_thresh = np.mean(output) + 0.2 dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255 return refine_mask(cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)) # Optional GrabCut refinement def apply_grabcut(image_np, dress_mask): bgd_model = np.zeros((1, 65), np.float64) fgd_model = np.zeros((1, 65), np.float64) mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8') coords = cv2.findNonZero(dress_mask) if coords is not None: x, y, w, h = cv2.boundingRect(coords) rect = (x, y, w, h) cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK) refined = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8") return refine_mask(refined) # LAB color recoloring def recolor_dress(image_np, dress_mask, target_color): target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) dress_pixels = img_lab[dress_mask > 0] if len(dress_pixels) == 0: return image_np mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0) a_shift = target_color_lab[1] - mean_A b_shift = target_color_lab[2] - mean_B img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255) img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255) img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB) feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7) lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7 adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8) return (image_np * (1 - adaptive_feather[..., None] / 255) + img_recolored * (adaptive_feather[..., None] / 255)).astype(np.uint8) # Main function def change_dress_color(img, color_prompt): if img is None or not color_prompt: return img img_np = np.array(img) target_bgr = get_bgr_from_color_name(color_prompt) try: dress_mask = segment_dress(img_np) if np.sum(dress_mask) < 1000: return img dress_mask = apply_grabcut(img_np, dress_mask) img_recolored = recolor_dress(img_np, dress_mask, target_bgr) return Image.fromarray(img_recolored) except Exception as e: print(f"Error: {e}") return img # Gradio UI with gr.Blocks() as demo: gr.Markdown("## 🎨 AI Dress Recolorer - Prompt Based") gr.Markdown("Upload an image and type a color (e.g., 'lavender', 'light green', 'royal blue').") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Upload Image") color_input = gr.Textbox(label="Enter Dress Color", placeholder="e.g. crimson, lavender, sky blue") recolor_btn = gr.Button("Apply New Color") with gr.Column(): output_image = gr.Image(type="pil", label="Recolored Result") recolor_btn.click(fn=change_dress_color, inputs=[input_image, color_input], outputs=output_image) if __name__ == "__main__": demo.launch()