File size: 1,320 Bytes
768d1ad
 
 
 
 
 
 
 
 
 
b985953
2e65f14
768d1ad
9e97937
2e65f14
 
 
768d1ad
 
 
 
 
 
 
2e65f14
768d1ad
2e65f14
 
768d1ad
 
 
 
 
 
2e65f14
 
 
 
 
 
768d1ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load CPU-optimized model
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2")

def generate_answer(context, question, max_new_tokens=100):
    """Generate answer with CPU optimizations"""
    # Create concise prompt
    prompt = f"""Based on the context, answer the question conversationally.

Context:
{context[:1000]}

Question: {question}
Answer:"""
    
    # Tokenize with truncation
    inputs = tokenizer(
        prompt, 
        return_tensors="pt",
        max_length=512,
        truncation=True
    )
    
    # Generate with CPU-optimized settings
    outputs = model.generate(
        inputs.input_ids,
        max_new_tokens=max_new_tokens,
        num_beams=1,                # Faster than beam search
        do_sample=True,             # More natural responses
        temperature=0.7,            # Balance creativity/focus
        top_k=40,                   # Focus on likely tokens
        top_p=0.9,                  # Nucleus sampling
        pad_token_id=tokenizer.eos_token_id,
        early_stopping=True
    )
    
    # Extract only the new text
    full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return full_text.split("Answer:")[-1].strip()