File size: 11,598 Bytes
f85af8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# espeak.py
import os
import json
import time
import gradio as gr
import speech_recognition as sr
import pyttsx3
import threading
from typing import Tuple
# Try importing OpenAI; if not present app will use local model fallback
USE_OPENAI = bool(os.getenv("OPENAI_API_KEY", "").strip())
if USE_OPENAI:
import openai
# Local model fallback (T5-based)
try:
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from happytransformer import HappyTextToText, TTSettings
LOCAL_MODEL_AVAILABLE = True
except Exception:
LOCAL_MODEL_AVAILABLE = False
# Optional: Levenshtein for better scoring
try:
import Levenshtein
_have_lev = True
except Exception:
_have_lev = False
APP_TITLE = "ESPeak β AI Grammar & Speech Assistant"
# ----------------------
# Utilities
# ----------------------
def levenshtein_distance(a: str, b: str) -> int:
if _have_lev:
return Levenshtein.distance(a, b)
# fallback simple DP (O(len(a)*len(b))) β fine for short sentences
la, lb = len(a), len(b)
if la == 0: return lb
if lb == 0: return la
dp = [[0]*(lb+1) for _ in range(la+1)]
for i in range(la+1):
dp[i][0] = i
for j in range(lb+1):
dp[0][j] = j
for i in range(1, la+1):
for j in range(1, lb+1):
cost = 0 if a[i-1]==b[j-1] else 1
dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+cost)
return dp[la][lb]
def score_from_edit(orig: str, corrected: str) -> int:
# Compute a simple score: smaller edit distance -> higher score
if not orig.strip():
return 0
dist = levenshtein_distance(orig, corrected)
# Normalize by length, clamp to [0,100]
norm = max(len(orig), 1)
ratio = max(0.0, 1.0 - dist / norm)
score = int(round(ratio * 100))
return score
# ----------------------
# Model loading
# ----------------------
tokenizer = model = happy_tt = None
if not USE_OPENAI and LOCAL_MODEL_AVAILABLE:
def load_local_models():
global tokenizer, model, happy_tt
model_name = "prithivida/grammar_error_correcter_v1"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
happy_tt = HappyTextToText("T5", model_name)
except Exception as e:
print("Local model load failed:", e)
raise
load_local_models()
# ----------------------
# Speech transcription helper (speech_recognition)
# ----------------------
def transcribe_audio_file(audio_filepath: str) -> str:
r = sr.Recognizer()
try:
with sr.AudioFile(audio_filepath) as source:
audio_data = r.record(source)
text = r.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return ""
except Exception as e:
return f"[transcription_error]: {str(e)}"
# ----------------------
# LLM connectors
# ----------------------
OPENAI_PROMPT_SYSTEM = (
"You are ESPeak Assistant β expert grammar corrector. "
"Return JSON only with keys: corrected_text (string), score (0-100 integer), explanation (short string)."
)
OPENAI_USER_TEMPLATE = (
"Correct this sentence for grammar, punctuation, and clarity while preserving tone:\n\n"
"### INPUT\n{input_text}\n\n"
"Return only JSON with corrected_text, score, and explanation."
)
def call_openai_correct(text: str) -> Tuple[str,int,str]:
messages = [
{"role":"system", "content": OPENAI_PROMPT_SYSTEM},
{"role":"user", "content": OPENAI_USER_TEMPLATE.format(input_text=text)}
]
resp = openai.ChatCompletion.create(
model="gpt-4o-mini" if "gpt-4o-mini" in openai.Model.list() else "gpt-4",
messages=messages,
temperature=0.0,
max_tokens=300
)
content = resp["choices"][0]["message"]["content"].strip()
# Try to parse JSON from response
try:
parsed = json.loads(content)
corrected = parsed.get("corrected_text", "")
score = int(parsed.get("score", score_from_edit(text, corrected)))
explanation = parsed.get("explanation", "")
return corrected, score, explanation
except Exception:
# fallback: use raw content β try to extract a JSON substring
try:
start = content.index("{")
end = content.rindex("}")+1
data = json.loads(content[start:end])
corrected = data.get("corrected_text","")
score = int(data.get("score", score_from_edit(text, corrected)))
explanation = data.get("explanation","")
return corrected, score, explanation
except Exception:
# Last resort: return plain corrected via model-less heuristic
corrected = content
score = score_from_edit(text, corrected)
explanation = "Auto-correction from OpenAI; parsing fallback used."
return corrected, score, explanation
def call_local_correct(text: str) -> Tuple[str,int,str]:
# Using prithivida T5 model and HappyTransformer to generate correction
prefix = "gec: " + text
# generate with transformers (fast)
try:
inputs = tokenizer.encode(prefix, return_tensors="pt", max_length=256, truncation=True)
with torch.no_grad():
outputs = model.generate(inputs, max_length=256, num_beams=4)
corrected = tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception:
corrected = text
# use happy transformer to also generate explanation-like correction (best-effort)
try:
args = TTSettings(num_beams=4, min_length=1)
happy_out = happy_tt.generate_text(prefix, args=args).text
# If happy returns something meaningful, prefer it to compute score
alt_correction = happy_out or corrected
except Exception:
alt_correction = corrected
score = score_from_edit(text, alt_correction)
# Basic explanation: detect what changed (very short)
explanation = []
if text.strip() == alt_correction.strip():
explanation = ["No change needed."]
else:
explanation = ["Adjusted grammar/punctuation; minor wording edits to improve clarity."]
return alt_correction, score, "; ".join(explanation)
# ----------------------
# Main processing function
# ----------------------
def process_input(audio, typed_text, use_tts=False, prefer_openai=False):
"""
audio: filepath from Gradio (or None)
typed_text: str
use_tts: bool -> read corrected text with local pyttsx3
prefer_openai: triage flag to prefer OpenAI (if key available)
"""
source_text = ""
# 1) Transcribe audio if present
if audio:
transcribed = transcribe_audio_file(audio)
if transcribed.startswith("[transcription_error]"):
source_text = typed_text or ""
trans_msg = transcribed
else:
source_text = transcribed
trans_msg = f"Transcribed: {transcribed}"
else:
source_text = typed_text or ""
trans_msg = "Typed input"
if not source_text.strip():
return "No input detected.", 0, "No correction (empty input).", trans_msg, json.dumps({})
# 2) Choose backend
use_openai_backend = False
if USE_OPENAI and prefer_openai:
use_openai_backend = True
elif USE_OPENAI and not LOCAL_MODEL_AVAILABLE:
use_openai_backend = True
elif not USE_OPENAI and LOCAL_MODEL_AVAILABLE:
use_openai_backend = False
elif USE_OPENAI and LOCAL_MODEL_AVAILABLE:
# default: prefer OpenAI if available (more robust), unless user opts out
use_openai_backend = prefer_openai or True
try:
if use_openai_backend:
corrected, score, explanation = call_openai_correct(source_text)
else:
corrected, score, explanation = call_local_correct(source_text)
except Exception as e:
# fallback to local heuristic if something fails
corrected = source_text
score = 0
explanation = f"Model error: {e}"
# 3) Optionally speak corrected text (pyttsx3)
tts_msg = ""
if use_tts:
try:
def speak(text):
engine = pyttsx3.init()
engine.say(text)
engine.runAndWait()
threading.Thread(target=speak, args=(corrected,), daemon=True).start()
tts_msg = "Speaking corrected text..."
except Exception as e:
tts_msg = f"TTS failed: {e}"
# 4) Build JSON metadata
meta = {
"original": source_text,
"corrected": corrected,
"score": score,
"explanation": explanation,
"backend": "openai" if use_openai_backend else "local",
"transcription_note": trans_msg,
"timestamp": int(time.time())
}
return corrected, score, explanation, trans_msg + (" β’ " + tts_msg if tts_msg else ""), json.dumps(meta, ensure_ascii=False, indent=2)
# ----------------------
# Gradio UI
# ----------------------
def build_ui():
with gr.Blocks(title=APP_TITLE, css="""
.header {background: linear-gradient(90deg,#ff8fa3,#ff6aa3); padding: 18px; border-radius: 12px; color:white}
.muted {color: #6b7280}
""") as demo:
# Header
with gr.Row(elem_id="top-row"):
with gr.Column(scale=3):
gr.Markdown(f"## <div class='header'>ESPeak β AI Grammar & Speech Assistant</div>")
gr.Markdown("Speak or type a sentence β ESPeak will correct grammar, score it, and explain changes. Use OpenAI backend if you set `OPENAI_API_KEY` in environment.")
with gr.Column(scale=1):
gr.Markdown("**Quick tips**\n- Speak clearly (short sentences work best)\n- Toggle TTS to hear the corrected sentence\n- Use `Prefer OpenAI` to route to ChatGPT if available")
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
audio = gr.Audio(sources="microphone", type="filepath", label="Record (microphone)")
typed = gr.Textbox(lines=3, placeholder="Or type your sentence here...", label="Text input")
with gr.Row():
tts_checkbox = gr.Checkbox(label="Play corrected (TTS)", value=False)
prefer_openai = gr.Checkbox(label="Prefer OpenAI backend (if available)", value=True)
run_btn = gr.Button("Check Grammar", variant="primary")
with gr.Column(scale=2):
corrected_out = gr.Textbox(label="Corrected Text", interactive=False)
score_out = gr.Number(label="Grammar Score (0-100)", interactive=False)
explanation_out = gr.Textbox(label="Explanation (what I changed)", interactive=False)
trans_note = gr.Textbox(label="Transcription / Info", interactive=False)
meta_out = gr.Code(label="JSON metadata (copyable)", language="json")
def on_submit(audio_file, typed_text, use_tts, use_openai):
return process_input(audio_file, typed_text, use_tts, use_openai)
run_btn.click(on_submit, inputs=[audio, typed, tts_checkbox, prefer_openai],
outputs=[corrected_out, score_out, explanation_out, trans_note, meta_out])
gr.Markdown("---")
gr.Markdown("**ESPeak** Β· Built for quick grammar checking of spoken and typed English. Designed for demos and interview projects.")
return demo
if __name__ == "__main__":
demo = build_ui()
demo.launch(share=False, inbrowser=True) |