assignment / app.py
gaur3009's picture
Update app.py
1fa4303 verified
import os
import io
import time
import json
import random
import tempfile
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import gradio as gr
try:
import openai
OPENAI_AVAILABLE = True
except Exception:
OPENAI_AVAILABLE = False
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if OPENAI_AVAILABLE and OPENAI_API_KEY:
openai.api_key = OPENAI_API_KEY
def generate_sample_csv(n=50):
base_date = datetime.now() + timedelta(days=7)
rows = []
interests = ["Data Engineering", "Machine Learning", "Web Dev", "Cloud", "Product"]
channels = ["Organic", "Ads", "Referral", "Partner", "Email Campaign"]
for i in range(1, n + 1):
name = f"User{i:03d}"
email = f"user{i:03d}@example.com"
phone = f"+91100000{i:04d}"[-13:]
interest = random.choice(interests)
channel = random.choice(channels)
registered_at = (datetime.now() - timedelta(days=random.randint(0, 14))).strftime('%Y-%m-%d')
rows.append({
"id": i,
"name": name,
"email": email,
"phone": phone,
"interest": interest,
"channel": channel,
"registered_at": registered_at
})
df = pd.DataFrame(rows)
tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
df.to_csv(tmpfile.name, index=False)
tmpfile.close()
return tmpfile.name
def load_leads_from_file(fileobj):
if fileobj is None:
return pd.DataFrame()
try:
df = pd.read_csv(fileobj)
except Exception:
fileobj.seek(0)
df = pd.read_csv(io.StringIO(fileobj.read().decode('utf-8')))
for col in ["name", "email", "phone", "interest", "registered_at"]:
if col not in df.columns:
df[col] = ""
return df
def estimate_attendance_prob(df, event_date=None):
df = df.copy()
if event_date is None:
event_date = datetime.now() + timedelta(days=7)
else:
if isinstance(event_date, str):
event_date = datetime.fromisoformat(event_date)
def channel_score(ch):
ch = str(ch).lower()
if 'ref' in ch: return 0.12
if 'organic' in ch: return 0.08
if 'partner' in ch: return 0.10
if 'email' in ch: return 0.06
return 0.03
interest_map = {
'Data Engineering': 0.12,
'Machine Learning': 0.11,
'Web Dev': 0.07,
'Cloud': 0.09,
'Product': 0.06
}
probs = []
for _, r in df.iterrows():
try:
reg = datetime.fromisoformat(str(r.get('registered_at')))
except Exception:
reg = datetime.now()
days_until = (event_date - reg).days
if days_until <= 0:
base = 0.25
elif days_until <= 2:
base = 0.22
elif days_until <= 7:
base = 0.18
else:
base = 0.12
ch_boost = channel_score(r.get('channel', ''))
interest_boost = interest_map.get(r.get('interest'), 0.05)
noise = random.uniform(-0.03, 0.03)
p = base + ch_boost + interest_boost + noise
p = max(0.01, min(0.95, p))
probs.append(round(p, 3))
df['predicted_prob'] = probs
return df
def generate_personalized_message(row, event_name="Scaler Live: Roadmap to Data Engineering", event_date=None, use_openai=False):
if event_date is None:
event_date = (datetime.now() + timedelta(days=7)).strftime('%b %d, %Y')
name = row.get('name', 'there')
interest = row.get('interest', '')
prob = row.get('predicted_prob', None)
if use_openai and OPENAI_AVAILABLE and OPENAI_API_KEY:
prompt = f"Write a short personalized reminder message (1-2 sentences) for {name} who is interested in {interest} to attend the online event '{event_name}' on {event_date}. Make it friendly and include a single call-to-action 'Join here: <link>'."
try:
resp = openai.Completion.create(
engine='text-davinci-003',
prompt=prompt,
max_tokens=80,
temperature=0.7,
n=1
)
return resp.choices[0].text.strip()
except Exception:
pass
urgency = "Don't miss out!" if (prob is not None and prob < 0.25) else "Can't wait to see you there!"
return f"Hi {name},\nWe have a short live session '{event_name}' on {event_date} that covers {interest} topics you care about. {urgency} Join here: <join-link>"
def batch_generate_messages(df, event_name, event_date, use_openai=False):
df = df.copy()
messages = []
for _, r in df.iterrows():
msg = generate_personalized_message(r, event_name=event_name, event_date=event_date, use_openai=use_openai)
messages.append(msg)
df['message'] = messages
return df
def simulate_send_campaign(df, channel='email'):
sent_rows = []
opens = 0
clicks = 0
for _, r in df.iterrows():
p = float(r.get('predicted_prob', 0.1))
open_prob = min(0.9, 0.2 + p * 0.6)
click_prob = min(0.8, 0.05 + p * 0.5)
opened = random.random() < open_prob
clicked = opened and (random.random() < click_prob)
sent_rows.append({
'id': r.get('id'),
'name': r.get('name'),
'email': r.get('email'),
'phone': r.get('phone'),
'predicted_prob': r.get('predicted_prob'),
'opened': opened,
'clicked': clicked,
'message': r.get('message')
})
opens += int(opened)
clicks += int(clicked)
sent_df = pd.DataFrame(sent_rows)
stats = {
'total_sent': len(sent_df),
'opens': int(opens),
'clicks': int(clicks),
'open_rate': round(opens / max(1, len(sent_df)), 3),
'click_rate': round(clicks / max(1, len(sent_df)), 3)
}
out_path = '/mnt/data/simulated_sent_log.csv'
try:
sent_df.to_csv(out_path, index=False)
except Exception:
pass
return stats, sent_df
def ui_generate_sample_csv(n=50):
return generate_sample_csv(n)
def ui_load_and_preview(file):
if file is None:
return pd.DataFrame()
df = load_leads_from_file(file)
df = estimate_attendance_prob(df)
return df
def ui_estimate_and_generate(df, event_name, event_date, use_openai=False):
if isinstance(df, str):
df = pd.read_csv(io.StringIO(df))
if df is None or len(df) == 0:
return pd.DataFrame(), "No leads provided"
df = estimate_attendance_prob(df, event_date=event_date)
df = batch_generate_messages(df, event_name, event_date, use_openai=use_openai)
return df, f"Generated messages and probabilities for {len(df)} leads"
def ui_simulate_send(df):
if isinstance(df, str):
df = pd.read_csv(io.StringIO(df))
stats, sent_df = simulate_send_campaign(df)
return stats, sent_df
def ui_export_csv(df):
if isinstance(df, str):
df = pd.read_csv(io.StringIO(df))
tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
df.to_csv(tmpfile.name, index=False)
tmpfile.close()
return tmpfile.name
with gr.Blocks(title="AI Conversion Automator - Scaler APM MVP") as demo:
gr.Markdown("# AI Conversion Automator β€” Increase joining % for free live class")
with gr.Tab("1. Sample CSV"):
with gr.Row():
n_samples = gr.Slider(minimum=10, maximum=500, value=50, label="Number of sample leads")
gen_btn = gr.Button("Generate sample CSV")
sample_download = gr.File()
gen_btn.click(fn=ui_generate_sample_csv, inputs=[n_samples], outputs=[sample_download])
with gr.Tab("2. Upload & Preview Leads"):
uploader = gr.File(label="Upload leads CSV (columns: id,name,email,phone,interest,channel,registered_at)")
preview = gr.Dataframe(headers=None, row_count=10)
load_btn = gr.Button("Load & Preview")
load_btn.click(fn=ui_load_and_preview, inputs=[uploader], outputs=[preview])
with gr.Tab("3. Generate Messages & Predictions"):
event_name = gr.Textbox(label="Event name", value="Roadmap to Data Engineering β€” Live Class")
event_date = gr.Textbox(label="Event date (YYYY-MM-DD)", value=(datetime.now() + timedelta(days=7)).strftime('%Y-%m-%d'))
use_openai = gr.Checkbox(label="Use OpenAI for message generation (requires OPENAI_API_KEY)", value=False)
generate_btn = gr.Button("Generate Messages & Probabilities")
generated_table = gr.Dataframe(headers=None, row_count=20)
status_txt = gr.Textbox(label="Status")
generate_btn.click(fn=ui_estimate_and_generate, inputs=[preview, event_name, event_date, use_openai], outputs=[generated_table, status_txt])
with gr.Tab("4. Simulate Campaign"):
simulate_btn = gr.Button("Simulate Send")
sim_stats = gr.JSON()
sim_table = gr.Dataframe(headers=None, row_count=20)
simulate_btn.click(fn=ui_simulate_send, inputs=[generated_table], outputs=[sim_stats, sim_table])
with gr.Tab("5. Export"):
export_btn = gr.Button("Export CSV")
download_file = gr.File()
export_btn.click(fn=ui_export_csv, inputs=[generated_table], outputs=[download_file])
if __name__ == '__main__':
demo.launch()