File size: 1,759 Bytes
79c9666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

device = torch.device("cpu")
model_id = "TheBloke/Mistral-7B-Instruct-v0.1"  # replace if needed
tokenizer = AutoTokenizer.from_pretrained(model_id)
llm = AutoModelForCausalLM.from_pretrained(model_id).to(device)

embedder = SentenceTransformer('all-MiniLM-L6-v2')

def search_and_summarize(query, max_papers=5):
    url = "https://arxiv.org/rss/cs.AI"
    res = requests.get(url)
    soup = BeautifulSoup(res.text, 'xml')
    items = soup.find_all('item')

    papers = []
    for item in items:
        title = item.title.text
        abstract = item.description.text
        link = item.link.text
        papers.append({'title': title, 'abstract': abstract, 'link': link})

    # embed & find top matches
    query_emb = embedder.encode(query)
    paper_embs = embedder.encode([p['abstract'] for p in papers])
    sims = util.cos_sim(query_emb, paper_embs)[0]
    top_idx = sims.argsort(descending=True)[:max_papers]

    results = []
    for idx in top_idx:
        paper = papers[idx]
        context = f"Title: {paper['title']}\nAbstract: {paper['abstract']}"
        prompt = f"{context}\n\nExplain this paper in simple terms for an AI researcher:"
        inputs = tokenizer(prompt, return_tensors="pt").to(device)
        outputs = llm.generate(**inputs, max_new_tokens=200)
        explanation = tokenizer.decode(outputs[0], skip_special_tokens=True)
        explanation = explanation[len(prompt):].strip()
        results.append({
            'title': paper['title'],
            'summary': explanation,
            'link': paper['link']
        })
    return results