from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device("cpu") model_id = "TheBloke/Mistral-7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to(device) def generate(summaries): context = " ".join([p['summary'] for p in summaries]) prompt = f"Based on these paper summaries:\n{context}\n\nSuggest a new AI research hypothesis:" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=100) text = tokenizer.decode(outputs[0], skip_special_tokens=True) return text[len(prompt):].strip()