File size: 4,530 Bytes
a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f 79b8531 a416f9f 79b8531 a416f9f 79b8531 a416f9f 79b8531 a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 79b8531 a8d51b7 79b8531 a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 a416f9f a8d51b7 79b8531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, EDMEulerScheduler
# π₯οΈ Detect device
device = "cuda" if torch.cuda.is_available() else "cpu"
# π― Model ID and config
model_repo_id = "stabilityai/sdxl-turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# π Load model with EDM + VPred scheduler
pipe = DiffusionPipeline.from_pretrained(
model_repo_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
variant="fp16" if torch.cuda.is_available() else None,
)
# π Replace scheduler with EDM + V-prediction
pipe.scheduler = EDMEulerScheduler.from_config(pipe.scheduler.config)
# π§ Enable optimizations if GPU
if device == "cuda":
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception as e:
print("β οΈ xFormers not available, using attention slicing.")
pipe.enable_attention_slicing()
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
pipe = pipe.to(device)
# π Inference function
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# π§ͺ Prompt examples
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
# π¨ UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# π§± Gradio Interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio (EDM + VPred)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=2.5, # Optimal for SDXL-Turbo
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=20,
step=1,
value=4, # Low default for EDM
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |