File size: 4,530 Bytes
a8d51b7
 
 
 
a416f9f
a8d51b7
a416f9f
a8d51b7
 
a416f9f
 
 
 
a8d51b7
a416f9f
 
 
 
 
 
79b8531
a416f9f
 
79b8531
a416f9f
 
 
 
 
 
 
79b8531
a416f9f
 
79b8531
a8d51b7
 
a416f9f
a8d51b7
 
 
 
 
 
 
 
 
 
 
 
 
 
a416f9f
a8d51b7
 
 
 
 
 
 
 
 
 
 
 
 
a416f9f
a8d51b7
 
 
 
 
 
a416f9f
a8d51b7
 
 
 
 
 
 
a416f9f
a8d51b7
 
a416f9f
a8d51b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b8531
a8d51b7
 
 
 
 
 
 
79b8531
a8d51b7
 
 
 
 
 
 
 
a416f9f
a8d51b7
 
 
 
 
a416f9f
a8d51b7
a416f9f
a8d51b7
 
 
a416f9f
a8d51b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b8531
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, EDMEulerScheduler

# πŸ–₯️ Detect device
device = "cuda" if torch.cuda.is_available() else "cpu"

# 🎯 Model ID and config
model_repo_id = "stabilityai/sdxl-turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# πŸ” Load model with EDM + VPred scheduler
pipe = DiffusionPipeline.from_pretrained(
    model_repo_id,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    variant="fp16" if torch.cuda.is_available() else None,
)

# πŸ”„ Replace scheduler with EDM + V-prediction
pipe.scheduler = EDMEulerScheduler.from_config(pipe.scheduler.config)

# 🧠 Enable optimizations if GPU
if device == "cuda":
    try:
        pipe.enable_xformers_memory_efficient_attention()
    except Exception as e:
        print("⚠️ xFormers not available, using attention slicing.")
        pipe.enable_attention_slicing()

    pipe.enable_model_cpu_offload()
    pipe.enable_vae_tiling()

pipe = pipe.to(device)

# πŸš€ Inference function
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

# πŸ§ͺ Prompt examples
examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

# 🎨 UI CSS
css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

# 🧱 Gradio Interface
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio (EDM + VPred)")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=2.5,  # Optimal for SDXL-Turbo
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=4,  # Low default for EDM
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()