File size: 5,073 Bytes
013bd0c cc2c691 013bd0c cc2c691 013bd0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import streamlit as st
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere
# Load credentials from environment variables or hardcoded (replace with env vars in prod)
WEAVIATE_URL = "vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)
cohere_client = cohere.Client(COHERE_API_KEY)
# Load sentence-transformer model
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def load_pdf(file):
"""Extract text from PDF file."""
reader = PyPDF2.PdfReader(file)
text = ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
return text
def get_embeddings(text):
"""Generate mean pooled embedding for the input text."""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
"""Insert document chunks into Weaviate collection with embeddings."""
doc_collection = client.collections.get("Document")
for chunk in chunks:
embedding = get_embeddings(chunk)
doc_collection.data.insert(
properties={"content": chunk},
vector=embedding.tolist()
)
def query_answer(query):
"""Search for top relevant document chunks based on query embedding."""
query_embedding = get_embeddings(query)
results = client.collections.get("Document").query.near_vector(
near_vector=query_embedding.tolist(),
limit=3
)
return results.objects
def generate_response(context, query):
"""Generate answer using Cohere model based on context and query."""
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
"""Main pipeline for QA: parse PDF, embed chunks, query Weaviate, and generate answer."""
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
top_docs = query_answer(query)
context = ' '.join([doc.properties['content'] for doc in top_docs])
answer = generate_response(context, query)
return context, answer
# Streamlit UI
st.set_page_config(page_title="Interactive QA Bot", layout="wide")
st.markdown(
"""
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
π Interactive QA Bot π
</div>
<p style="text-align: center; font-size: 16px; color: #4A5568;">
Upload a PDF document, ask questions, and receive answers based on the document content.
</p>
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
""", unsafe_allow_html=True
)
col1, col2 = st.columns([1, 2])
with col1:
pdf_file = st.file_uploader("π Upload PDF", type=["pdf"])
query = st.text_input("β Ask a Question", placeholder="Enter your question here...")
submit = st.button("π Submit")
with col2:
doc_segments_output = st.empty()
answer_output = st.empty()
if submit:
if not pdf_file:
st.warning("Please upload a PDF file first.")
elif not query.strip():
st.warning("Please enter a question.")
else:
with st.spinner("Processing..."):
context, answer = qa_pipeline(pdf_file, query)
doc_segments_output.text_area("π Retrieved Document Segments", context, height=200)
answer_output.text_area("π¬ Answer", answer, height=80)
# Optional custom CSS for styling
st.markdown(
"""
<style>
body {
background-color: #EDF2F7;
}
.stFileUploader > div > div > input {
background-color: #3182CE !important;
color: white !important;
padding: 8px !important;
border-radius: 5px !important;
}
button {
background-color: #3182CE !important;
color: white !important;
padding: 10px !important;
font-size: 16px !important;
border-radius: 5px !important;
cursor: pointer;
border: none !important;
}
button:hover {
background-color: #2B6CB0 !important;
}
textarea {
border: 2px solid #CBD5E0 !important;
border-radius: 8px !important;
padding: 10px !important;
background-color: #FAFAFA !important;
}
</style>
""", unsafe_allow_html=True
) |