scrapper / app.py
gaur3009's picture
Update app.py
228aaa0 verified
import asyncio
import os
import re
import json
import time
import zipfile
from urllib.parse import urljoin, urlparse
from typing import List, Dict, Any, Optional, Tuple, Set
import requests
import pandas as pd
from bs4 import BeautifulSoup
import gradio as gr
# =========================
# Config
# =========================
MAX_CONCURRENCY = 4 # concurrent pages to scrape
PLAYWRIGHT_WAIT_MS = 1500 # wait a bit for JS
FETCH_RETRIES = 2 # playwright retries per URL
SEARCH_PAGES = 2 # DDG result pages per query
RESULTS_PER_QUERY = 10 # target results per query
USER_AGENT = (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"
)
# =========================
# Optional LLM (OpenAI)
# =========================
def openai_extract_json(html: str, url: str, fields: List[str], api_key: Optional[str]) -> Optional[List[Dict[str, Any]]]:
if not api_key:
return None
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
field_hint = ", ".join(fields) if fields else "title, price, image, rating, url"
system = (
"You are a robust web extractor. Given raw HTML and the page URL, "
"return an array of JSON objects with fields you can infer (and the requested fields if present). "
"Always output strictly valid JSON with double-quoted keys/strings. Include absolute image URLs if possible."
)
user = (
f"URL: {url}\n\n"
f"Required fields to attempt: [{field_hint}]\n\n"
"Return JSON array only. Do not include any commentary.\n\n"
f"HTML:\n{html[:180000]}"
)
resp = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "system", "content": system}, {"role": "user", "content": user}],
temperature=0,
)
content = resp.choices[0].message.content.strip()
content = re.sub(r"^```(?:json)?|```$", "", content).strip()
data = json.loads(content)
if isinstance(data, dict):
data = [data]
if isinstance(data, list):
return data
return None
except Exception as e:
print("OpenAI extraction failed:", e)
return None
# =========================
# Playwright page loader (with retries)
# =========================
async def _fetch_dom_once(url: str, wait_ms: int) -> str:
from playwright.async_api import async_playwright
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
page = await browser.new_page(user_agent=USER_AGENT)
await page.goto(url, wait_until="domcontentloaded", timeout=30000)
try:
await page.wait_for_load_state("networkidle", timeout=8000)
except Exception:
pass
if wait_ms > 0:
await asyncio.sleep(wait_ms / 1000)
html = await page.content()
await browser.close()
return html
async def fetch_dom(url: str, wait_ms: int = PLAYWRIGHT_WAIT_MS, retries: int = FETCH_RETRIES) -> str:
last_err = None
for attempt in range(1, retries + 2):
try:
return await _fetch_dom_once(url, wait_ms)
except Exception as e:
last_err = e
await asyncio.sleep(0.6 * attempt)
raise last_err
# =========================
# Heuristic extraction
# =========================
def extract_images_and_items(html: str, base_url: str, card_selector: Optional[str] = None) -> Tuple[List[Dict[str, Any]], List[str]]:
soup = BeautifulSoup(html, "html.parser")
# Collect all images on page
images = []
for img in soup.find_all("img"):
src = img.get("src") or img.get("data-src") or img.get("data-original")
if not src:
continue
abs_src = urljoin(base_url, src)
images.append(abs_src)
# Find likely product/article cards
items = []
if card_selector:
candidates = soup.select(card_selector)
else:
candidates = soup.select(
"div.product, li.product, div.card, article, div.product-item, "
"div.s-result-item, div._1AtVbE, div._4ddWXP, div.MuiCard-root, "
"section, li.grid-item"
)
if not candidates:
candidates = [a.parent for a in soup.select("a img") if a.parent]
for c in candidates:
try:
title = None
for sel in ["h1", "h2", "h3", ".title", ".product-title", "._4rR01T", ".s1Q9rs", "a[title]"]:
n = c.select_one(sel)
if n and n.get_text(strip=True):
title = n.get_text(strip=True)
break
if not title:
img = c.find("img")
if img and img.get("alt"):
title = img.get("alt").strip()
price = None
price_text = c.get_text(" ", strip=True)
m = re.search(r"(?:β‚Ή|Rs\.?|INR|\$|€|Β£)\s?\d[\d,]*(?:\.\d+)?", price_text)
if m:
price = m.group(0)
link = c.find("a")
href = urljoin(base_url, link.get("href")) if link and link.get("href") else base_url
img = c.find("img")
img_src = None
if img:
img_src = img.get("src") or img.get("data-src") or img.get("data-original")
if img_src:
img_src = urljoin(base_url, img_src)
if any([title, price, img_src]):
items.append({"title": title, "price": price, "url": href, "image": img_src})
except Exception:
continue
# De-duplicate images
seen = set()
unique_images = []
for u in images:
if u not in seen:
seen.add(u)
unique_images.append(u)
return items, unique_images
# =========================
# Image download & optional captioning
# =========================
def download_images(image_urls: List[str], out_dir: str) -> List[str]:
os.makedirs(out_dir, exist_ok=True)
saved = []
s = requests.Session()
s.headers.update({"User-Agent": USER_AGENT})
for u in image_urls:
try:
name = os.path.basename(urlparse(u).path) or f"img_{len(saved)+1}.jpg"
if not os.path.splitext(name)[1]:
name += ".jpg"
path = os.path.join(out_dir, name)
r = s.get(u, timeout=20)
if r.status_code == 200 and r.content:
with open(path, "wb") as f:
f.write(r.content)
saved.append(path)
except Exception as e:
print("Image download failed:", u, e)
return saved
def caption_images(paths: List[str]) -> Dict[str, str]:
try:
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
captions = {}
for p in paths:
try:
im = Image.open(p).convert("RGB")
inputs = processor(im, return_tensors="pt").to(device)
out = model.generate(**inputs, max_new_tokens=40)
text = processor.decode(out[0], skip_special_tokens=True)
captions[p] = text
except Exception as e:
captions[p] = f"(caption failed: {e})"
return captions
except Exception as e:
print("Captioning unavailable:", e)
return {}
# =========================
# ZIP helper
# =========================
def zip_paths(paths: List[str], zip_path: str) -> str:
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zf:
for p in paths:
if os.path.isfile(p):
zf.write(p, arcname=os.path.basename(p))
return zip_path
# =========================
# Search helpers (Prompt β†’ Queries β†’ Links)
# =========================
ADS_PRESETS = [
# public/archival ad sources (safer than scraping walled platforms)
"site:adsoftheworld.com",
"site:theinspiration.com",
"site:ads-of-the-world.s3", # mirrors sometimes
"site:behance.net ad campaign",
"site:dribbble.com case study ad",
]
NEWS_SIGNAL = [
"site:news.ycombinator.com", "site:techcrunch.com", "site:theverge.com",
"site:adage.com", "site:campaignlive.com"
]
def build_queries_from_prompt(prompt: str, include_ads_sources: bool) -> List[str]:
# very lightweight keyword clean
base = re.sub(r"[^a-zA-Z0-9\s:+\-_/\.]", " ", prompt).strip()
base = re.sub(r"\s+", " ", base)
core_variants = [
base,
f'{base} best examples',
f'{base} recent campaigns',
f'{base} case study',
f'{base} images',
]
queries = []
for v in core_variants:
queries.append(v)
# tilt towards news relevance
for ns in NEWS_SIGNAL[:2]:
queries.append(f"{v} {ns}")
if include_ads_sources:
for v in core_variants:
for siteq in ADS_PRESETS:
queries.append(f"{v} {siteq}")
# de-dup while keeping order
seen = set()
uniq = []
for q in queries:
if q not in seen:
seen.add(q)
uniq.append(q)
return uniq[:12] # cap
def ddg_search(query: str, pages: int = 1) -> List[Tuple[str, str]]:
"""
Returns list of (title, url) from DuckDuckGo HTML results, across pages.
"""
results = []
session = requests.Session()
session.headers.update({"User-Agent": USER_AGENT})
for page in range(pages):
params = {"q": query}
if page > 0:
params["s"] = str(page * 50) # pagination hint
r = session.get("https://duckduckgo.com/html/", params=params, timeout=20)
soup = BeautifulSoup(r.text, "html.parser")
for res in soup.select(".result"):
a = res.select_one(".result__a")
if not a:
continue
title = a.get_text(strip=True)
href = a.get("href")
if not href:
continue
results.append((title, href))
return results
def pick_best_links(all_results: List[Tuple[str, str]], want: int = 10) -> List[str]:
"""
Simple pragmatic ranking:
- de-duplicate by URL & domain
- prefer diverse domains
"""
picked = []
seen_urls: Set[str] = set()
seen_domains: Set[str] = set()
for _, url in all_results:
u = url.strip()
if not u or u in seen_urls:
continue
dom = urlparse(u).netloc.lower()
if dom.startswith("www."):
dom = dom[4:]
# skip obvious DDG redirectors or trackers if any
if dom in {"duckduckgo.com"}:
continue
if dom in seen_domains and len(picked) < want // 2:
# allow later, but early phase enforce domain diversity
continue
seen_urls.add(u)
seen_domains.add(dom)
picked.append(u)
if len(picked) >= want:
break
return picked
def search_links_from_prompt(prompt: str, include_ads_sources: bool, per_query: int, pages: int) -> List[str]:
queries = build_queries_from_prompt(prompt, include_ads_sources)
all_results: List[Tuple[str, str]] = []
for q in queries:
try:
res = ddg_search(q, pages=pages)
# take top-k per query
all_results.extend(res[:per_query])
except Exception as e:
print("Search failed for query:", q, e)
continue
# global pick
best = pick_best_links(all_results, want=max(5, per_query * 2))
return best
# =========================
# Main scrape orchestrator (async with semaphore)
# =========================
async def scrape_one(url: str, fields: List[str], use_llm: bool, api_key: Optional[str],
card_selector: Optional[str], log: List[str], sem: asyncio.Semaphore) -> Dict[str, Any]:
async with sem:
try:
html = await fetch_dom(url)
except Exception as e:
log.append(f"[ERROR] Failed to load: {url} -> {e}")
return {"url": url, "html": "", "items": [], "images": [], "llm_rows": []}
items, images = [], []
try:
items, images = extract_images_and_items(html, url, card_selector)
except Exception as e:
log.append(f"[WARN] Parse issue on: {url} -> {e}")
llm_rows = []
if use_llm:
try:
llm_rows = openai_extract_json(html, url, fields, api_key) or []
except Exception as e:
log.append(f"[WARN] LLM extraction failed: {url} -> {e}")
return {"url": url, "html": html, "items": items, "images": images, "llm_rows": llm_rows}
def to_dataframe(rows: List[Dict[str, Any]]) -> pd.DataFrame:
if not rows:
return pd.DataFrame()
all_keys = set()
for r in rows:
all_keys.update(r.keys())
ordered = []
for r in rows:
d = {k: r.get(k) for k in all_keys}
ordered.append(d)
df = pd.DataFrame(ordered)
preferred = [k for k in ["title", "name", "price", "rating", "image", "url"] if k in df.columns]
others = [c for c in df.columns if c not in preferred]
df = df[preferred + others]
return df
# =========================
# Gradio wrapper
# =========================
def run_scrape(input_mode: str,
prompt_or_urls: str,
fields_text: str,
card_selector: str,
include_ads_sources: bool,
per_query_results: int,
search_pages: int,
use_llm: bool,
api_key: str,
download_imgs: bool,
do_caption: bool):
start = time.time()
log: List[str] = []
# Resolve URLs
if input_mode == "Prompt":
if not prompt_or_urls.strip():
return pd.DataFrame(), [], None, None, None, "Enter a prompt.", "No prompt given."
log.append(f"[INFO] Building queries from prompt: {prompt_or_urls!r}")
urls = search_links_from_prompt(
prompt_or_urls.strip(),
include_ads_sources=include_ads_sources,
per_query=per_query_results,
pages=max(1, search_pages)
)
if not urls:
return pd.DataFrame(), [], None, None, None, "No links found.", "\n".join(log)
log.append(f"[INFO] Selected {len(urls)} links from search.")
else:
urls = [u.strip() for u in prompt_or_urls.splitlines() if u.strip()]
if not urls:
return pd.DataFrame(), [], None, None, None, "Enter at least one URL.", "No URLs supplied."
log.append(f"[INFO] Using {len(urls)} direct URL(s).")
fields = [f.strip() for f in fields_text.split(',')] if fields_text.strip() else []
out_dir = os.path.abspath("scrape_output")
os.makedirs(out_dir, exist_ok=True)
# Async scrape with semaphore
sem = asyncio.Semaphore(MAX_CONCURRENCY)
async def gather_all():
tasks = [
scrape_one(u, fields, use_llm, api_key if use_llm else None, card_selector or None, log, sem)
for u in urls
]
return await asyncio.gather(*tasks)
try:
scraped = asyncio.run(gather_all())
except RuntimeError:
scraped = asyncio.get_event_loop().run_until_complete(gather_all())
except Exception as e:
log.append(f"[FATAL] Async run failed: {e}")
return pd.DataFrame(), [], None, None, None, "Run failed.", "\n".join(log)
heuristic_rows: List[Dict[str, Any]] = []
llm_rows: List[Dict[str, Any]] = []
all_images: List[str] = []
for s in scraped:
if not isinstance(s, dict):
continue
heuristic_rows.extend(s.get("items", []))
llm_rows.extend(s.get("llm_rows", []))
all_images.extend(s.get("images", []))
# prefer LLM rows if available
rows = llm_rows if use_llm and llm_rows else heuristic_rows
df = to_dataframe(rows)
ts = int(time.time())
json_path = os.path.join(out_dir, f"scrape_{ts}.json")
csv_path = os.path.join(out_dir, f"scrape_{ts}.csv")
try:
df.to_csv(csv_path, index=False)
with open(json_path, "w", encoding="utf-8") as f:
json.dump(rows, f, ensure_ascii=False, indent=2)
except Exception as e:
log.append(f"[WARN] Failed to save CSV/JSON: {e}")
json_path = None
csv_path = None
gallery_paths, zip_path = [], None
if download_imgs and all_images:
try:
img_dir = os.path.join(out_dir, f"images_{ts}")
saved = download_images(all_images, img_dir)
gallery_paths = saved[:120]
if do_caption and saved:
try:
captions_map = caption_images(saved)
if not df.empty:
img_col = None
for c in df.columns:
if c.lower() in ("image", "image_url", "img", "imageurl"):
img_col = c
break
if img_col:
def _map_caption(u):
if not u:
return ""
fname = os.path.basename(urlparse(str(u)).path)
return captions_map.get(os.path.join(img_dir, fname), "")
df["caption"] = df[img_col].map(_map_caption)
df.to_csv(csv_path, index=False)
with open(json_path, "w", encoding="utf-8") as f:
json.dump(json.loads(df.to_json(orient="records")), f, ensure_ascii=False, indent=2)
except Exception as e:
log.append(f"[WARN] Captioning failed: {e}")
zip_path = os.path.join(out_dir, f"images_{ts}.zip")
try:
zip_paths(saved, zip_path)
except Exception as e:
log.append(f"[WARN] ZIP failed: {e}")
zip_path = None
except Exception as e:
log.append(f"[WARN] Image pipeline failed: {e}")
elapsed = round(time.time() - start, 2)
gallery_data = [(p, os.path.basename(p)) for p in gallery_paths]
status = f"Scraped {len(urls)} URL(s) β€’ Rows: {len(df)} β€’ Images found: {len(all_images)} β€’ Time: {elapsed}s"
return df, gallery_data, (json_path if json_path and os.path.isfile(json_path) else None), \
(csv_path if csv_path and os.path.isfile(csv_path) else None), \
(zip_path if zip_path and os.path.isfile(zip_path) else None), \
status, "\n".join(log) if log else "OK"
# =========================
# Gradio UI
# =========================
with gr.Blocks(title="AI Scraper β€” Prompt β†’ Best Links β†’ Text+Images", css=".gradio-container {max-width: 1200px !important}") as demo:
gr.Markdown("""
# πŸ•·οΈ AI-Powered Prompt Scraper (2025)
- Give a **prompt** (e.g., "Gen Z pink organic skincare ad campaign in India 2024")
β†’ we search smartly, pick strong links (optionally ad archives), and scrape **text + images**
- Or switch to **Direct URLs** mode and paste URLs.
- Optional **LLM semantic parsing** to structured JSON.
""")
with gr.Row():
input_mode = gr.Radio(choices=["Prompt", "Direct URLs"], value="Prompt", label="Input Mode")
with gr.Row():
prompt_or_urls = gr.Textbox(
label="Prompt (or URLs if in Direct mode)",
placeholder="e.g., gen z pink skincare ad campaign india 2024"
)
with gr.Row():
fields = gr.Textbox(label="Fields to extract (comma-separated)", placeholder="title, price, image, rating, url")
card_selector = gr.Textbox(label="Optional CSS selector for item cards", placeholder="div.product, article, .card")
with gr.Row():
include_ads_sources = gr.Checkbox(label="Bias search towards ad archives/sources", value=True)
per_query_results = gr.Slider(1, 15, value=6, step=1, label="Top results to keep per query")
search_pages = gr.Slider(1, 3, value=2, step=1, label="Search pages per query (DDG)")
with gr.Row():
use_llm = gr.Checkbox(label="Use OpenAI for semantic extraction", value=False)
api_key = gr.Textbox(label="OpenAI API Key (if using LLM)", type="password")
with gr.Row():
download_imgs = gr.Checkbox(label="Download images", value=True)
do_caption = gr.Checkbox(label="Caption images (slow)", value=False)
run_btn = gr.Button("πŸš€ Run Scraper", variant="primary")
with gr.Row():
table = gr.Dataframe(label="Extracted Data (preview)", interactive=False)
gallery = gr.Gallery(label="Scraped Images (subset)", show_label=True, height=420, allow_preview=True)
with gr.Row():
json_file = gr.File(label="Download JSON")
csv_file = gr.File(label="Download CSV")
zip_file = gr.File(label="Download Images ZIP")
status = gr.Markdown("Ready.")
logs = gr.Textbox(label="Run Logs", lines=10)
run_btn.click(
fn=run_scrape,
inputs=[
input_mode, prompt_or_urls, fields, card_selector,
include_ads_sources, per_query_results, search_pages,
use_llm, api_key, download_imgs, do_caption
],
outputs=[table, gallery, json_file, csv_file, zip_file, status, logs]
)
if __name__ == "__main__":
demo.launch()