Spaces:
Sleeping
Sleeping
File size: 9,299 Bytes
07f6f3d 86a8577 07f6f3d 86a8577 07f6f3d ee8c642 07f6f3d ee8c642 07f6f3d 86a8577 07f6f3d f2c8695 ee8c642 5db3cdf f2c8695 5db3cdf f2c8695 07f6f3d f2c8695 ee8c642 86a8577 f2c8695 86a8577 5db3cdf 86a8577 f2c8695 5db3cdf 86a8577 f2c8695 ee8c642 5db3cdf f2c8695 ee8c642 f2c8695 5db3cdf f2c8695 86a8577 ee8c642 5db3cdf 07f6f3d afbe0d3 07f6f3d 86a8577 07f6f3d ee8c642 07f6f3d 5db3cdf 07f6f3d 5db3cdf 07f6f3d afbe0d3 07f6f3d f2c8695 07f6f3d ee8c642 07f6f3d ee8c642 07f6f3d 5db3cdf 07f6f3d ee8c642 07f6f3d 86a8577 07f6f3d ee8c642 5db3cdf 07f6f3d 5db3cdf 07f6f3d ee8c642 07f6f3d 5db3cdf 07f6f3d 5db3cdf afbe0d3 ee8c642 afbe0d3 5db3cdf afbe0d3 07f6f3d ee8c642 afbe0d3 f2c8695 07f6f3d 5db3cdf afbe0d3 07f6f3d afbe0d3 07f6f3d 5db3cdf 07f6f3d ee8c642 07f6f3d 5db3cdf 86a8577 5db3cdf 07f6f3d 86a8577 07f6f3d ee8c642 5db3cdf ee8c642 5db3cdf ee8c642 5db3cdf ee8c642 07f6f3d 5db3cdf 07f6f3d 5db3cdf ee8c642 5db3cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
import os
import time
import threading
from PIL import Image
import numpy as np
# ======================
# Configuration
# ======================
CONFIG = {
"pexels_api_key": "HSknLvmKmOXuqXsE89NXzu6ysOqPr7FmHGObjaSdhTTmpFSuK5K7OaHn",
"scraping": {
"search_url": "https://api.pexels.com/v1/search?query={query}&per_page=80",
"max_images": 100,
"progress_interval": 1
},
"training": {
"batch_size": 4,
"epochs": 10,
"lr": 0.0002,
"latent_dim": 100,
"img_size": 64,
"num_workers": 0,
"progress_interval": 0.5
},
"paths": {
"dataset_dir": "scraped_data",
"model_save": "text2img_model.pth"
}
}
# ======================
# Web Scraping Module (Now using Pexels API)
# ======================
class WebScraper:
def __init__(self):
self.stop_event = threading.Event()
self.scraped_data = []
self._lock = threading.Lock()
self.scraping_progress = 0
self.scraped_count = 0
self.total_images = 0
def __getstate__(self):
state = self.__dict__.copy()
del state['stop_event']
del state['_lock']
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.stop_event = threading.Event()
self._lock = threading.Lock()
def scrape_images(self, query):
with self._lock:
self.scraping_progress = 0
self.scraped_count = 0
url = CONFIG["scraping"]["search_url"].format(query=query)
headers = {
"Authorization": CONFIG["pexels_api_key"]
}
try:
response = requests.get(url, headers=headers)
data = response.json()
photos = data.get("photos", [])
self.total_images = min(len(photos), CONFIG["scraping"]["max_images"])
for idx, photo in enumerate(photos[:self.total_images]):
if self.stop_event.is_set():
break
img_url = photo["src"]["large"]
try:
img_data = requests.get(img_url).content
img_name = f"{int(time.time())}_{idx}.jpg"
os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
with open(img_path, 'wb') as f:
f.write(img_data)
self.scraped_data.append({"text": query, "image": img_path})
self.scraped_count = idx + 1
self.scraping_progress = (idx + 1) / self.total_images * 100
except Exception as e:
print(f"Error downloading image: {e}")
time.sleep(0.1)
except Exception as e:
print(f"API scraping error: {e}")
finally:
self.scraping_progress = 100
def start_scraping(self, query):
self.scraped_data.clear()
self.stop_event.clear()
thread = threading.Thread(target=self.scrape_images, args=(query,))
thread.start()
return "Scraping started..."
# ======================
# Dataset and Models (Unchanged)
# ======================
class TextImageDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
try:
image = Image.open(item["image"]).convert('RGB')
image = image.resize((64, 64))
image = np.array(image).transpose(2, 0, 1) / 127.5 - 1
image = torch.tensor(image, dtype=torch.float32)
except Exception as e:
print(f"Error loading image: {e}")
image = torch.randn(3, 64, 64)
return {"text": item["text"], "image": image}
class TextConditionedGenerator(nn.Module):
def __init__(self):
super().__init__()
self.text_embedding = nn.Embedding(1000, 128)
self.model = nn.Sequential(
nn.Linear(128 + 100, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 3*64*64),
nn.Tanh()
)
def forward(self, text, noise):
text_emb = self.text_embedding(text)
combined = torch.cat([text_emb, noise], 1)
return self.model(combined).view(-1, 3, 64, 64)
# ======================
# Training Utilities (Unchanged)
# ======================
def train_model(scraper, progress=gr.Progress()):
if len(scraper.scraped_data) == 0:
return "Error: No images scraped! Scrape images first."
dataset = TextImageDataset(scraper.scraped_data)
dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)
generator = TextConditionedGenerator()
discriminator = nn.Sequential(
nn.Linear(3*64*64, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
nn.Sigmoid()
)
optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
criterion = nn.BCELoss()
for epoch in progress.tqdm(range(CONFIG["training"]["epochs"])):
for batch in dataloader:
real_imgs = batch["image"]
text_tokens = torch.randint(0, 1000, (real_imgs.size(0),))
noise = torch.randn(real_imgs.size(0), 100)
real_labels = torch.ones(real_imgs.size(0), 1)
fake_labels = torch.zeros(real_imgs.size(0), 1)
# Discriminator update
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_imgs.view(-1, 3*64*64)), real_labels)
fake_imgs = generator(text_tokens, noise)
fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64*64)), fake_labels)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Generator update
optimizer_G.zero_grad()
g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64*64)), real_labels)
g_loss.backward()
optimizer_G.step()
torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
return f"Training complete! Used {len(dataset)} samples"
# ======================
# Image Generation (Unchanged)
# ======================
class ModelRunner:
def __init__(self):
self.pretrained_pipe = None
self.custom_model = None
def load_pretrained(self):
if not self.pretrained_pipe:
self.pretrained_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
return self.pretrained_pipe
def load_custom(self):
if not self.custom_model:
model = TextConditionedGenerator()
model.load_state_dict(torch.load(CONFIG["paths"]["model_save"]))
model.eval()
self.custom_model = model
return self.custom_model
def generate_image(prompt, model_type, runner):
if model_type == "Pretrained":
pipe = runner.load_pretrained()
image = pipe(prompt).images[0]
return image
else:
model = runner.load_custom()
noise = torch.randn(1, 100)
with torch.no_grad():
fake = model(torch.randint(0, 1000, (1,)), noise)
image = fake.squeeze().permute(1, 2, 0).numpy()
image = (image + 1) / 2
return Image.fromarray((image * 255).astype(np.uint8))
# ======================
# Gradio Interface (Unchanged)
# ======================
def create_interface():
with gr.Blocks() as app:
scraper = gr.State(WebScraper())
runner = gr.State(ModelRunner())
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Search Query")
scrape_btn = gr.Button("Start Scraping")
scrape_status = gr.Textbox(label="Scraping Status")
train_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status")
with gr.Column():
prompt_input = gr.Textbox(label="Generation Prompt")
model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
scrape_btn.click(lambda s, q: s.start_scraping(q), [scraper, query_input], [scrape_status])
train_btn.click(lambda s: train_model(s), [scraper], [training_status])
generate_btn.click(lambda p, m, r: generate_image(p, m, r), [prompt_input, model_choice, runner], [output_image])
return app
# ======================
# Launch
# ======================
app = create_interface()
app.launch() |