File size: 9,299 Bytes
07f6f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86a8577
07f6f3d
86a8577
07f6f3d
ee8c642
07f6f3d
 
 
 
 
 
 
ee8c642
 
07f6f3d
 
 
 
 
 
 
 
86a8577
07f6f3d
 
 
 
 
f2c8695
ee8c642
 
 
5db3cdf
f2c8695
 
 
 
 
5db3cdf
f2c8695
 
 
 
 
07f6f3d
f2c8695
ee8c642
 
86a8577
 
 
 
 
f2c8695
86a8577
 
 
 
5db3cdf
86a8577
f2c8695
 
5db3cdf
86a8577
f2c8695
 
ee8c642
5db3cdf
f2c8695
 
 
 
ee8c642
 
f2c8695
 
5db3cdf
f2c8695
86a8577
ee8c642
 
5db3cdf
07f6f3d
afbe0d3
07f6f3d
 
 
 
 
 
86a8577
07f6f3d
 
ee8c642
07f6f3d
5db3cdf
07f6f3d
 
5db3cdf
07f6f3d
 
afbe0d3
 
 
 
 
 
 
 
07f6f3d
 
 
 
 
f2c8695
07f6f3d
ee8c642
07f6f3d
 
 
 
ee8c642
07f6f3d
 
5db3cdf
07f6f3d
 
 
ee8c642
07f6f3d
 
86a8577
07f6f3d
 
ee8c642
 
5db3cdf
07f6f3d
5db3cdf
 
07f6f3d
 
ee8c642
07f6f3d
 
 
 
5db3cdf
07f6f3d
 
 
5db3cdf
 
afbe0d3
 
 
ee8c642
afbe0d3
 
5db3cdf
afbe0d3
07f6f3d
ee8c642
afbe0d3
 
f2c8695
07f6f3d
 
5db3cdf
afbe0d3
07f6f3d
afbe0d3
07f6f3d
 
5db3cdf
07f6f3d
ee8c642
07f6f3d
5db3cdf
86a8577
5db3cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f6f3d
86a8577
07f6f3d
ee8c642
 
5db3cdf
 
 
ee8c642
 
 
 
 
5db3cdf
ee8c642
 
5db3cdf
ee8c642
 
 
 
 
07f6f3d
5db3cdf
 
 
07f6f3d
5db3cdf
ee8c642
5db3cdf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
import os
import time
import threading
from PIL import Image
import numpy as np

# ======================
# Configuration
# ======================
CONFIG = {
    "pexels_api_key": "HSknLvmKmOXuqXsE89NXzu6ysOqPr7FmHGObjaSdhTTmpFSuK5K7OaHn",
    "scraping": {
        "search_url": "https://api.pexels.com/v1/search?query={query}&per_page=80",
        "max_images": 100,
        "progress_interval": 1
    },
    "training": {
        "batch_size": 4,
        "epochs": 10,
        "lr": 0.0002,
        "latent_dim": 100,
        "img_size": 64,
        "num_workers": 0,
        "progress_interval": 0.5
    },
    "paths": {
        "dataset_dir": "scraped_data",
        "model_save": "text2img_model.pth"
    }
}

# ======================
# Web Scraping Module (Now using Pexels API)
# ======================
class WebScraper:
    def __init__(self):
        self.stop_event = threading.Event()
        self.scraped_data = []
        self._lock = threading.Lock()
        self.scraping_progress = 0
        self.scraped_count = 0
        self.total_images = 0

    def __getstate__(self):
        state = self.__dict__.copy()
        del state['stop_event']
        del state['_lock']
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        self.stop_event = threading.Event()
        self._lock = threading.Lock()

    def scrape_images(self, query):
        with self._lock:
            self.scraping_progress = 0
            self.scraped_count = 0
            url = CONFIG["scraping"]["search_url"].format(query=query)
            headers = {
                "Authorization": CONFIG["pexels_api_key"]
            }

            try:
                response = requests.get(url, headers=headers)
                data = response.json()
                photos = data.get("photos", [])
                self.total_images = min(len(photos), CONFIG["scraping"]["max_images"])

                for idx, photo in enumerate(photos[:self.total_images]):
                    if self.stop_event.is_set():
                        break

                    img_url = photo["src"]["large"]
                    try:
                        img_data = requests.get(img_url).content
                        img_name = f"{int(time.time())}_{idx}.jpg"
                        os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
                        img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
                        with open(img_path, 'wb') as f:
                            f.write(img_data)
                        self.scraped_data.append({"text": query, "image": img_path})
                        self.scraped_count = idx + 1
                        self.scraping_progress = (idx + 1) / self.total_images * 100
                    except Exception as e:
                        print(f"Error downloading image: {e}")
                    time.sleep(0.1)
            except Exception as e:
                print(f"API scraping error: {e}")
            finally:
                self.scraping_progress = 100

    def start_scraping(self, query):
        self.scraped_data.clear()
        self.stop_event.clear()
        thread = threading.Thread(target=self.scrape_images, args=(query,))
        thread.start()
        return "Scraping started..."

# ======================
# Dataset and Models (Unchanged)
# ======================
class TextImageDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        try:
            image = Image.open(item["image"]).convert('RGB')
            image = image.resize((64, 64))
            image = np.array(image).transpose(2, 0, 1) / 127.5 - 1
            image = torch.tensor(image, dtype=torch.float32)
        except Exception as e:
            print(f"Error loading image: {e}")
            image = torch.randn(3, 64, 64)
        return {"text": item["text"], "image": image}

class TextConditionedGenerator(nn.Module):
    def __init__(self):
        super().__init__()
        self.text_embedding = nn.Embedding(1000, 128)
        self.model = nn.Sequential(
            nn.Linear(128 + 100, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.LeakyReLU(0.2),
            nn.Linear(512, 3*64*64),
            nn.Tanh()
        )

    def forward(self, text, noise):
        text_emb = self.text_embedding(text)
        combined = torch.cat([text_emb, noise], 1)
        return self.model(combined).view(-1, 3, 64, 64)

# ======================
# Training Utilities (Unchanged)
# ======================
def train_model(scraper, progress=gr.Progress()):
    if len(scraper.scraped_data) == 0:
        return "Error: No images scraped! Scrape images first."

    dataset = TextImageDataset(scraper.scraped_data)
    dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)

    generator = TextConditionedGenerator()
    discriminator = nn.Sequential(
        nn.Linear(3*64*64, 512),
        nn.LeakyReLU(0.2),
        nn.Linear(512, 1),
        nn.Sigmoid()
    )

    optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
    optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
    criterion = nn.BCELoss()

    for epoch in progress.tqdm(range(CONFIG["training"]["epochs"])):
        for batch in dataloader:
            real_imgs = batch["image"]
            text_tokens = torch.randint(0, 1000, (real_imgs.size(0),))
            noise = torch.randn(real_imgs.size(0), 100)
            real_labels = torch.ones(real_imgs.size(0), 1)
            fake_labels = torch.zeros(real_imgs.size(0), 1)

            # Discriminator update
            optimizer_D.zero_grad()
            real_loss = criterion(discriminator(real_imgs.view(-1, 3*64*64)), real_labels)
            fake_imgs = generator(text_tokens, noise)
            fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64*64)), fake_labels)
            d_loss = (real_loss + fake_loss) / 2
            d_loss.backward()
            optimizer_D.step()

            # Generator update
            optimizer_G.zero_grad()
            g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64*64)), real_labels)
            g_loss.backward()
            optimizer_G.step()

    torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
    return f"Training complete! Used {len(dataset)} samples"

# ======================
# Image Generation (Unchanged)
# ======================
class ModelRunner:
    def __init__(self):
        self.pretrained_pipe = None
        self.custom_model = None

    def load_pretrained(self):
        if not self.pretrained_pipe:
            self.pretrained_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        return self.pretrained_pipe

    def load_custom(self):
        if not self.custom_model:
            model = TextConditionedGenerator()
            model.load_state_dict(torch.load(CONFIG["paths"]["model_save"]))
            model.eval()
            self.custom_model = model
        return self.custom_model

def generate_image(prompt, model_type, runner):
    if model_type == "Pretrained":
        pipe = runner.load_pretrained()
        image = pipe(prompt).images[0]
        return image
    else:
        model = runner.load_custom()
        noise = torch.randn(1, 100)
        with torch.no_grad():
            fake = model(torch.randint(0, 1000, (1,)), noise)
        image = fake.squeeze().permute(1, 2, 0).numpy()
        image = (image + 1) / 2
        return Image.fromarray((image * 255).astype(np.uint8))

# ======================
# Gradio Interface (Unchanged)
# ======================
def create_interface():
    with gr.Blocks() as app:
        scraper = gr.State(WebScraper())
        runner = gr.State(ModelRunner())

        with gr.Row():
            with gr.Column():
                query_input = gr.Textbox(label="Search Query")
                scrape_btn = gr.Button("Start Scraping")
                scrape_status = gr.Textbox(label="Scraping Status")

                train_btn = gr.Button("Start Training")
                training_status = gr.Textbox(label="Training Status")

            with gr.Column():
                prompt_input = gr.Textbox(label="Generation Prompt")
                model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
                generate_btn = gr.Button("Generate Image")
                output_image = gr.Image(label="Generated Image")

        scrape_btn.click(lambda s, q: s.start_scraping(q), [scraper, query_input], [scrape_status])
        train_btn.click(lambda s: train_model(s), [scraper], [training_status])
        generate_btn.click(lambda p, m, r: generate_image(p, m, r), [prompt_input, model_choice, runner], [output_image])

    return app

# ======================
# Launch
# ======================
app = create_interface()
app.launch()