Spaces:
Sleeping
Sleeping
File size: 17,211 Bytes
f567466 30aefbc f567466 ad83ee7 f567466 2776189 9a77142 34887f1 9a77142 2776189 9a77142 2776189 0600503 2776189 9a77142 0600503 9a77142 2776189 ad83ee7 9a77142 34887f1 9a77142 34887f1 9a77142 34887f1 9a77142 2776189 9a77142 2776189 9a77142 34887f1 9a77142 2776189 f567466 2776189 f567466 2776189 9a77142 2776189 9a77142 2776189 34887f1 2776189 f567466 9a77142 f567466 9a77142 f567466 9a77142 f567466 9a77142 f567466 34887f1 f567466 34887f1 f567466 30aefbc ad83ee7 f3eb784 30aefbc f3eb784 ad83ee7 f3eb784 ad83ee7 f3eb784 ad83ee7 f3eb784 ad83ee7 f3eb784 ad83ee7 f567466 ad83ee7 f567466 ad83ee7 f567466 ad83ee7 f567466 30aefbc ad83ee7 30aefbc ad83ee7 30aefbc ad83ee7 f567466 30aefbc ad83ee7 30aefbc ad83ee7 f567466 30aefbc f567466 30aefbc f567466 ad83ee7 f567466 2776189 f567466 2776189 f567466 2776189 f567466 2776189 f567466 2776189 26a5cc7 2776189 f567466 ad83ee7 ff7c83f 2776189 ad83ee7 ff7c83f 2776189 ad83ee7 ff7c83f 2776189 f567466 ad83ee7 2776189 ad83ee7 f567466 ad83ee7 f567466 ad83ee7 f567466 2776189 26a5cc7 2776189 26a5cc7 2776189 ad83ee7 30aefbc f567466 2776189 ad83ee7 2776189 ad83ee7 30aefbc 2776189 87ba4cd 2776189 f567466 ad83ee7 f567466 ad83ee7 f567466 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import gradio as gr
import torch
import sys
import os
from pathlib import Path
import importlib.util
import huggingface_hub
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import selfies as sf
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import Descriptors, rdMolDescriptors
import numpy as np
from PIL import Image
import io
class SimpleMolecularApp:
def __init__(self):
self.model = None
self.tokenizer = None
self.config = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Shared modules path
self.SHARED_MODULES_DIR = Path("./shared_modules")
self.SHARED_MODULES_DIR.mkdir(exist_ok=True)
# Download shared modules and tokenizer files once
self._ensure_shared_modules()
# Supported models
self.SUPPORTED_MODELS = {
"Non-RL Pretrained": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo",
"subfolder": None,
"local_dir": "./chemq3_non_rl_model"
},
"RL Finetuned β Step 9000": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo",
"subfolder": "ppo_checkpoints/model_step_9000",
"local_dir": "./chemq3_rlnp_step9000"
},
"RL Pareto Finetuned β Step 2250": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo-RL-checkpoints",
"subfolder": "checkpoints-pareto/model_step_2250",
"local_dir": "./chemq3_rlp_step2250"
},
"RL Pareto Finetuned β Step 4500": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo-RL-checkpoints",
"subfolder": "checkpoints-pareto/model_step_4500",
"local_dir": "./chemq3_rlp_step4500"
}
}
def _ensure_shared_modules(self):
"""Download shared Python modules and tokenizer files from main repo"""
print("π¦ Downloading shared modules and tokenizer files from main repo...")
huggingface_hub.snapshot_download(
repo_id="gbyuvd/ChemMiniQ3-SAbRLo",
local_dir=str(self.SHARED_MODULES_DIR),
allow_patterns=["*.py", "tokenizer*", "vocab*", "merges*", "special_tokens*", "tokenizer_config*"],
resume_download=True
)
print("β
Shared modules and tokenizer files ready!")
def load_model_by_name(self, model_key):
"""Load a specific model by key from SUPPORTED_MODELS"""
if model_key not in self.SUPPORTED_MODELS:
print(f"β Unknown model: {model_key}")
return False
config = self.SUPPORTED_MODELS[model_key]
repo_id = config["repo_id"]
subfolder = config["subfolder"]
local_dir = config["local_dir"]
print(f"π Loading model: {model_key} from {repo_id}")
# Download model weights/config only
if subfolder:
allow_patterns = [
f"{subfolder}/config.json",
f"{subfolder}/pytorch_model.bin",
f"{subfolder}/model.safetensors",
f"{subfolder}/generation_config.json"
]
huggingface_hub.snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
allow_patterns=allow_patterns,
resume_download=True
)
model_path = Path(local_dir) / subfolder
else:
# Non-RL: download all files (since no subfolder)
huggingface_hub.snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
resume_download=True
)
model_path = Path(local_dir)
if not model_path.exists():
print(f"β Model path not found: {model_path}")
return False
# Load custom modules from shared path
loaded_modules = self.load_custom_modules_from_shared()
if not loaded_modules:
return False
# Register model components
config_class, model_class, tokenizer_class = self.register_model_components(loaded_modules)
if not config_class:
return False
# Load model and tokenizer
self.model, self.tokenizer, self.config = self.load_model_with_shared_tokenizer(model_path)
if self.model is None:
return False
self.model = self.model.to(self.device)
self.model.eval()
print(f"β
Successfully loaded: {model_key}")
return True
def load_custom_modules_from_shared(self):
"""Load custom modules from shared directory"""
if str(self.SHARED_MODULES_DIR) not in sys.path:
sys.path.insert(0, str(self.SHARED_MODULES_DIR))
required_files = {
'configuration_chemq3mtp.py': 'configuration_chemq3mtp',
'modeling_chemq3mtp.py': 'modeling_chemq3mtp',
'FastChemTokenizerHF.py': 'FastChemTokenizerHF'
}
loaded_modules = {}
for filename, module_name in required_files.items():
file_path = self.SHARED_MODULES_DIR / filename
if not file_path.exists():
print(f"β Required file not found in shared modules: {filename}")
return None
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
loaded_modules[module_name] = module
print(f" β
Loaded {filename} from shared modules")
except Exception as e:
print(f" β Failed to load {filename}: {e}")
return None
return loaded_modules
def register_model_components(self, loaded_modules):
"""Register the model components with transformers"""
try:
ChemQ3MTPConfig = loaded_modules['configuration_chemq3mtp'].ChemQ3MTPConfig
ChemQ3MTPForCausalLM = loaded_modules['modeling_chemq3mtp'].ChemQ3MTPForCausalLM
FastChemTokenizerSelfies = loaded_modules['FastChemTokenizerHF'].FastChemTokenizerSelfies
AutoConfig.register("chemq3_mtp", ChemQ3MTPConfig)
AutoModelForCausalLM.register(ChemQ3MTPConfig, ChemQ3MTPForCausalLM)
AutoTokenizer.register(ChemQ3MTPConfig, FastChemTokenizerSelfies)
print("β
Model components registered successfully")
return ChemQ3MTPConfig, ChemQ3MTPForCausalLM, FastChemTokenizerSelfies
except Exception as e:
print(f"β Registration failed: {e}")
return None, None, None
def load_model_with_shared_tokenizer(self, model_path):
"""Load the model using the registered components with shared tokenizer"""
try:
config = AutoConfig.from_pretrained(str(model_path), trust_remote_code=False)
model = AutoModelForCausalLM.from_pretrained(
str(model_path),
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=False
)
# Use custom tokenizer class with shared tokenizer files
FastChemTokenizerSelfies = self.load_custom_modules_from_shared()['FastChemTokenizerHF'].FastChemTokenizerSelfies
tokenizer = FastChemTokenizerSelfies.from_pretrained(str(self.SHARED_MODULES_DIR))
return model, tokenizer, config
except Exception as e:
print(f"β Model loading failed: {e}")
return None, None, None
def calculate_lipinski_properties(self, mol):
"""Calculate Lipinski's Rule of Five properties"""
if mol is None:
return {}
# Calculate molecular descriptors
molecular_weight = Descriptors.MolWt(mol)
h_bond_donors = rdMolDescriptors.CalcNumHBD(mol) # Hydrogen bond donors
h_bond_acceptors = rdMolDescriptors.CalcNumHBA(mol) # Hydrogen bond acceptors
logp = Descriptors.MolLogP(mol) # LogP (octanol-water partition coefficient)
tpsa = Descriptors.TPSA(mol) # Topological Polar Surface Area
rotatable_bonds = rdMolDescriptors.CalcNumRotatableBonds(mol)
heavy_atoms = mol.GetNumHeavyAtoms()
# Lipinski's Rule of Five violations
violations = 0
if molecular_weight > 500: violations += 1
if h_bond_donors > 5: violations += 1
if h_bond_acceptors > 10: violations += 1
if logp > 5: violations += 1
return {
'molecular_weight': round(molecular_weight, 2),
'h_bond_donors': h_bond_donors,
'h_bond_acceptors': h_bond_acceptors,
'logp': round(logp, 2),
'tpsa': round(tpsa, 2),
'rotatable_bonds': rotatable_bonds,
'heavy_atoms': heavy_atoms,
'lipinski_violations': violations
}
def generate_molecule(self, temperature=1.0, max_length=30, top_k=50):
"""Generate a complete molecule using MTP"""
if self.model is None:
return "Model not loaded!", None, "β Model not loaded"
try:
# Use the same logic as your reference code
input_ids = self.tokenizer("<s>", return_tensors="pt").input_ids.to(self.device)
if hasattr(self.model, 'generate_with_logprobs'):
print("Using MTP-specific generation...")
outputs = self.model.generate_with_logprobs(
input_ids,
max_new_tokens=max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
return_probs=True,
tokenizer=self.tokenizer
)
# Extract tokens from MTP output (index 2)
gen_tokens = outputs[2]
else:
print("Using standard generation...")
gen_tokens = self.model.generate(
input_ids,
max_length=input_ids.shape[1] + max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id if hasattr(self.tokenizer, 'pad_token_id') else 0
)
# Decode the generated molecule
generatedmol = self.tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
selfies_str = generatedmol.replace(' ', '')
smiles = sf.decoder(selfies_str)
info_text = f"Generated SELFIES: {selfies_str}\n"
info_text += f"Decoded SMILES: {smiles}\n"
# Visualize molecule
mol_image = None
property_text = ""
if smiles:
mol = Chem.MolFromSmiles(smiles)
if mol:
# Generate molecule image
img = Draw.MolToImage(mol, size=(400, 400))
mol_image = img
# Calculate Lipinski properties
props = self.calculate_lipinski_properties(mol)
property_text = "π§ͺ Molecular Properties (Lipinski's Rule of Five):\n"
property_text += f"β’ Molecular Weight: {props['molecular_weight']} g/mol\n"
property_text += f"β’ H-Bond Donors: {props['h_bond_donors']}\n"
property_text += f"β’ H-Bond Acceptors: {props['h_bond_acceptors']}\n"
property_text += f"β’ LogP: {props['logp']}\n"
property_text += f"β’ TPSA: {props['tpsa']} Γ
Β²\n"
property_text += f"β’ Rotatable Bonds: {props['rotatable_bonds']}\n"
property_text += f"β’ Heavy Atoms: {props['heavy_atoms']}\n"
property_text += f"β’ Lipinski Violations: {props['lipinski_violations']}/4\n"
# Rule of Five assessment
if props['lipinski_violations'] <= 1:
property_text += "β
Drug-like molecule (Lipinski compliant)"
else:
property_text += f"β οΈ May have poor bioavailability ({props['lipinski_violations']} violations)"
info_text += "β
Valid molecule generated!"
else:
property_text = "β οΈ Could not calculate properties - invalid SMILES structure"
info_text += "β οΈ Invalid SMILES structure"
else:
property_text = "β οΈ Could not calculate properties - could not decode to SMILES"
info_text += "β οΈ Could not decode to SMILES"
return info_text, mol_image, property_text
except Exception as e:
return f"Error generating molecule: {str(e)}", None, "β Error calculating properties"
def create_simple_interface():
"""Create the simplified Gradio interface"""
app = SimpleMolecularApp()
# Preload default model (Non-RL)
default_model = "Non-RL Pretrained"
print(f"Initializing default model: {default_model}")
if not app.load_model_by_name(default_model):
print("Failed to initialize default model!")
return None
print("Model initialized successfully!")
with gr.Blocks(title="π§ͺ ChemMiniQ3-SAbRLo Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π§ͺ ChemMiniQ3-SAbRLo Demo
Generate molecules using either the **Non-RL pretrained model** or **RL-finetuned checkpoints**
optimized with a **ParetoRewards controller**.
""")
with gr.Row():
model_choice = gr.Dropdown(
choices=list(app.SUPPORTED_MODELS.keys()),
value=default_model,
label="Select Model"
)
load_btn = gr.Button("π Load Selected Model", variant="secondary")
# Model status indicator
model_status = gr.Textbox(
label="Model Status",
value=f"β
Current Model: {default_model}",
interactive=False,
show_copy_button=True
)
# Generation controls
with gr.Row():
with gr.Column():
temp_slider = gr.Slider(
minimum=0.1, maximum=2.0, value=1.0,
label="Temperature", info="Higher = more random",
step=0.1
)
length_slider = gr.Slider(
minimum=10, maximum=50, value=30,
label="Max Length", info="Max tokens to generate",
step=1, precision=0
)
topk_slider = gr.Slider(
minimum=10, maximum=100, value=50,
label="Top-K", info="Sampling diversity",
step=1, precision=0
)
generate_btn = gr.Button("π§ͺ Generate Molecule", variant="primary")
with gr.Column():
mol_info = gr.Textbox(
label="Molecule Information",
lines=5,
interactive=False
)
mol_image = gr.Image(
label="Generated Molecule",
type="pil"
)
# Molecular properties section
property_info = gr.Textbox(
label="Molecular Properties (Lipinski's Rule of Five)",
lines=10,
interactive=False
)
def load_model_wrapper(model_name):
success = app.load_model_by_name(model_name)
if success:
status = f"β
Current Model: {model_name} (Ready to use!)"
else:
status = f"β Failed to load: {model_name}"
return status
load_btn.click(
fn=load_model_wrapper,
inputs=model_choice,
outputs=model_status
)
# Generate molecule
generate_btn.click(
fn=app.generate_molecule,
inputs=[temp_slider, length_slider, topk_slider],
outputs=[mol_info, mol_image, property_info]
)
gr.Examples(
examples=[
[1.0, 30, 50],
[0.8, 25, 40],
[1.5, 35, 60],
],
inputs=[temp_slider, length_slider, topk_slider],
fn=app.generate_molecule,
outputs=[mol_info, mol_image, property_info],
cache_examples=False # Disable if model can change
)
return demo
if __name__ == "__main__":
demo = create_simple_interface()
if demo:
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
else:
print("Failed to create interface!") |