gbyuvd's picture
Update app.py
26a5cc7 verified
import gradio as gr
import torch
import sys
import os
from pathlib import Path
import importlib.util
import huggingface_hub
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import selfies as sf
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import Descriptors, rdMolDescriptors
import numpy as np
from PIL import Image
import io
class SimpleMolecularApp:
def __init__(self):
self.model = None
self.tokenizer = None
self.config = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Shared modules path
self.SHARED_MODULES_DIR = Path("./shared_modules")
self.SHARED_MODULES_DIR.mkdir(exist_ok=True)
# Download shared modules and tokenizer files once
self._ensure_shared_modules()
# Supported models
self.SUPPORTED_MODELS = {
"Non-RL Pretrained": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo",
"subfolder": None,
"local_dir": "./chemq3_non_rl_model"
},
"RL Finetuned – Step 9000": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo",
"subfolder": "ppo_checkpoints/model_step_9000",
"local_dir": "./chemq3_rlnp_step9000"
},
"RL Pareto Finetuned – Step 2250": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo-RL-checkpoints",
"subfolder": "checkpoints-pareto/model_step_2250",
"local_dir": "./chemq3_rlp_step2250"
},
"RL Pareto Finetuned – Step 4500": {
"repo_id": "gbyuvd/ChemMiniQ3-SAbRLo-RL-checkpoints",
"subfolder": "checkpoints-pareto/model_step_4500",
"local_dir": "./chemq3_rlp_step4500"
}
}
def _ensure_shared_modules(self):
"""Download shared Python modules and tokenizer files from main repo"""
print("πŸ“¦ Downloading shared modules and tokenizer files from main repo...")
huggingface_hub.snapshot_download(
repo_id="gbyuvd/ChemMiniQ3-SAbRLo",
local_dir=str(self.SHARED_MODULES_DIR),
allow_patterns=["*.py", "tokenizer*", "vocab*", "merges*", "special_tokens*", "tokenizer_config*"],
resume_download=True
)
print("βœ… Shared modules and tokenizer files ready!")
def load_model_by_name(self, model_key):
"""Load a specific model by key from SUPPORTED_MODELS"""
if model_key not in self.SUPPORTED_MODELS:
print(f"❌ Unknown model: {model_key}")
return False
config = self.SUPPORTED_MODELS[model_key]
repo_id = config["repo_id"]
subfolder = config["subfolder"]
local_dir = config["local_dir"]
print(f"πŸ”„ Loading model: {model_key} from {repo_id}")
# Download model weights/config only
if subfolder:
allow_patterns = [
f"{subfolder}/config.json",
f"{subfolder}/pytorch_model.bin",
f"{subfolder}/model.safetensors",
f"{subfolder}/generation_config.json"
]
huggingface_hub.snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
allow_patterns=allow_patterns,
resume_download=True
)
model_path = Path(local_dir) / subfolder
else:
# Non-RL: download all files (since no subfolder)
huggingface_hub.snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
resume_download=True
)
model_path = Path(local_dir)
if not model_path.exists():
print(f"❌ Model path not found: {model_path}")
return False
# Load custom modules from shared path
loaded_modules = self.load_custom_modules_from_shared()
if not loaded_modules:
return False
# Register model components
config_class, model_class, tokenizer_class = self.register_model_components(loaded_modules)
if not config_class:
return False
# Load model and tokenizer
self.model, self.tokenizer, self.config = self.load_model_with_shared_tokenizer(model_path)
if self.model is None:
return False
self.model = self.model.to(self.device)
self.model.eval()
print(f"βœ… Successfully loaded: {model_key}")
return True
def load_custom_modules_from_shared(self):
"""Load custom modules from shared directory"""
if str(self.SHARED_MODULES_DIR) not in sys.path:
sys.path.insert(0, str(self.SHARED_MODULES_DIR))
required_files = {
'configuration_chemq3mtp.py': 'configuration_chemq3mtp',
'modeling_chemq3mtp.py': 'modeling_chemq3mtp',
'FastChemTokenizerHF.py': 'FastChemTokenizerHF'
}
loaded_modules = {}
for filename, module_name in required_files.items():
file_path = self.SHARED_MODULES_DIR / filename
if not file_path.exists():
print(f"❌ Required file not found in shared modules: {filename}")
return None
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
loaded_modules[module_name] = module
print(f" βœ… Loaded {filename} from shared modules")
except Exception as e:
print(f" ❌ Failed to load {filename}: {e}")
return None
return loaded_modules
def register_model_components(self, loaded_modules):
"""Register the model components with transformers"""
try:
ChemQ3MTPConfig = loaded_modules['configuration_chemq3mtp'].ChemQ3MTPConfig
ChemQ3MTPForCausalLM = loaded_modules['modeling_chemq3mtp'].ChemQ3MTPForCausalLM
FastChemTokenizerSelfies = loaded_modules['FastChemTokenizerHF'].FastChemTokenizerSelfies
AutoConfig.register("chemq3_mtp", ChemQ3MTPConfig)
AutoModelForCausalLM.register(ChemQ3MTPConfig, ChemQ3MTPForCausalLM)
AutoTokenizer.register(ChemQ3MTPConfig, FastChemTokenizerSelfies)
print("βœ… Model components registered successfully")
return ChemQ3MTPConfig, ChemQ3MTPForCausalLM, FastChemTokenizerSelfies
except Exception as e:
print(f"❌ Registration failed: {e}")
return None, None, None
def load_model_with_shared_tokenizer(self, model_path):
"""Load the model using the registered components with shared tokenizer"""
try:
config = AutoConfig.from_pretrained(str(model_path), trust_remote_code=False)
model = AutoModelForCausalLM.from_pretrained(
str(model_path),
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=False
)
# Use custom tokenizer class with shared tokenizer files
FastChemTokenizerSelfies = self.load_custom_modules_from_shared()['FastChemTokenizerHF'].FastChemTokenizerSelfies
tokenizer = FastChemTokenizerSelfies.from_pretrained(str(self.SHARED_MODULES_DIR))
return model, tokenizer, config
except Exception as e:
print(f"❌ Model loading failed: {e}")
return None, None, None
def calculate_lipinski_properties(self, mol):
"""Calculate Lipinski's Rule of Five properties"""
if mol is None:
return {}
# Calculate molecular descriptors
molecular_weight = Descriptors.MolWt(mol)
h_bond_donors = rdMolDescriptors.CalcNumHBD(mol) # Hydrogen bond donors
h_bond_acceptors = rdMolDescriptors.CalcNumHBA(mol) # Hydrogen bond acceptors
logp = Descriptors.MolLogP(mol) # LogP (octanol-water partition coefficient)
tpsa = Descriptors.TPSA(mol) # Topological Polar Surface Area
rotatable_bonds = rdMolDescriptors.CalcNumRotatableBonds(mol)
heavy_atoms = mol.GetNumHeavyAtoms()
# Lipinski's Rule of Five violations
violations = 0
if molecular_weight > 500: violations += 1
if h_bond_donors > 5: violations += 1
if h_bond_acceptors > 10: violations += 1
if logp > 5: violations += 1
return {
'molecular_weight': round(molecular_weight, 2),
'h_bond_donors': h_bond_donors,
'h_bond_acceptors': h_bond_acceptors,
'logp': round(logp, 2),
'tpsa': round(tpsa, 2),
'rotatable_bonds': rotatable_bonds,
'heavy_atoms': heavy_atoms,
'lipinski_violations': violations
}
def generate_molecule(self, temperature=1.0, max_length=30, top_k=50):
"""Generate a complete molecule using MTP"""
if self.model is None:
return "Model not loaded!", None, "❌ Model not loaded"
try:
# Use the same logic as your reference code
input_ids = self.tokenizer("<s>", return_tensors="pt").input_ids.to(self.device)
if hasattr(self.model, 'generate_with_logprobs'):
print("Using MTP-specific generation...")
outputs = self.model.generate_with_logprobs(
input_ids,
max_new_tokens=max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
return_probs=True,
tokenizer=self.tokenizer
)
# Extract tokens from MTP output (index 2)
gen_tokens = outputs[2]
else:
print("Using standard generation...")
gen_tokens = self.model.generate(
input_ids,
max_length=input_ids.shape[1] + max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id if hasattr(self.tokenizer, 'pad_token_id') else 0
)
# Decode the generated molecule
generatedmol = self.tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
selfies_str = generatedmol.replace(' ', '')
smiles = sf.decoder(selfies_str)
info_text = f"Generated SELFIES: {selfies_str}\n"
info_text += f"Decoded SMILES: {smiles}\n"
# Visualize molecule
mol_image = None
property_text = ""
if smiles:
mol = Chem.MolFromSmiles(smiles)
if mol:
# Generate molecule image
img = Draw.MolToImage(mol, size=(400, 400))
mol_image = img
# Calculate Lipinski properties
props = self.calculate_lipinski_properties(mol)
property_text = "πŸ§ͺ Molecular Properties (Lipinski's Rule of Five):\n"
property_text += f"β€’ Molecular Weight: {props['molecular_weight']} g/mol\n"
property_text += f"β€’ H-Bond Donors: {props['h_bond_donors']}\n"
property_text += f"β€’ H-Bond Acceptors: {props['h_bond_acceptors']}\n"
property_text += f"β€’ LogP: {props['logp']}\n"
property_text += f"β€’ TPSA: {props['tpsa']} Γ…Β²\n"
property_text += f"β€’ Rotatable Bonds: {props['rotatable_bonds']}\n"
property_text += f"β€’ Heavy Atoms: {props['heavy_atoms']}\n"
property_text += f"β€’ Lipinski Violations: {props['lipinski_violations']}/4\n"
# Rule of Five assessment
if props['lipinski_violations'] <= 1:
property_text += "βœ… Drug-like molecule (Lipinski compliant)"
else:
property_text += f"⚠️ May have poor bioavailability ({props['lipinski_violations']} violations)"
info_text += "βœ… Valid molecule generated!"
else:
property_text = "⚠️ Could not calculate properties - invalid SMILES structure"
info_text += "⚠️ Invalid SMILES structure"
else:
property_text = "⚠️ Could not calculate properties - could not decode to SMILES"
info_text += "⚠️ Could not decode to SMILES"
return info_text, mol_image, property_text
except Exception as e:
return f"Error generating molecule: {str(e)}", None, "❌ Error calculating properties"
def create_simple_interface():
"""Create the simplified Gradio interface"""
app = SimpleMolecularApp()
# Preload default model (Non-RL)
default_model = "Non-RL Pretrained"
print(f"Initializing default model: {default_model}")
if not app.load_model_by_name(default_model):
print("Failed to initialize default model!")
return None
print("Model initialized successfully!")
with gr.Blocks(title="πŸ§ͺ ChemMiniQ3-SAbRLo Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ§ͺ ChemMiniQ3-SAbRLo Demo
Generate molecules using either the **Non-RL pretrained model** or **RL-finetuned checkpoints**
optimized with a **ParetoRewards controller**.
""")
with gr.Row():
model_choice = gr.Dropdown(
choices=list(app.SUPPORTED_MODELS.keys()),
value=default_model,
label="Select Model"
)
load_btn = gr.Button("πŸ” Load Selected Model", variant="secondary")
# Model status indicator
model_status = gr.Textbox(
label="Model Status",
value=f"βœ… Current Model: {default_model}",
interactive=False,
show_copy_button=True
)
# Generation controls
with gr.Row():
with gr.Column():
temp_slider = gr.Slider(
minimum=0.1, maximum=2.0, value=1.0,
label="Temperature", info="Higher = more random",
step=0.1
)
length_slider = gr.Slider(
minimum=10, maximum=50, value=30,
label="Max Length", info="Max tokens to generate",
step=1, precision=0
)
topk_slider = gr.Slider(
minimum=10, maximum=100, value=50,
label="Top-K", info="Sampling diversity",
step=1, precision=0
)
generate_btn = gr.Button("πŸ§ͺ Generate Molecule", variant="primary")
with gr.Column():
mol_info = gr.Textbox(
label="Molecule Information",
lines=5,
interactive=False
)
mol_image = gr.Image(
label="Generated Molecule",
type="pil"
)
# Molecular properties section
property_info = gr.Textbox(
label="Molecular Properties (Lipinski's Rule of Five)",
lines=10,
interactive=False
)
def load_model_wrapper(model_name):
success = app.load_model_by_name(model_name)
if success:
status = f"βœ… Current Model: {model_name} (Ready to use!)"
else:
status = f"❌ Failed to load: {model_name}"
return status
load_btn.click(
fn=load_model_wrapper,
inputs=model_choice,
outputs=model_status
)
# Generate molecule
generate_btn.click(
fn=app.generate_molecule,
inputs=[temp_slider, length_slider, topk_slider],
outputs=[mol_info, mol_image, property_info]
)
gr.Examples(
examples=[
[1.0, 30, 50],
[0.8, 25, 40],
[1.5, 35, 60],
],
inputs=[temp_slider, length_slider, topk_slider],
fn=app.generate_molecule,
outputs=[mol_info, mol_image, property_info],
cache_examples=False # Disable if model can change
)
return demo
if __name__ == "__main__":
demo = create_simple_interface()
if demo:
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
else:
print("Failed to create interface!")