Spaces:
Sleeping
Sleeping
File size: 1,205 Bytes
f490006 21004c4 f490006 21004c4 f490006 21004c4 f490006 21004c4 6300e91 21004c4 f490006 21004c4 f490006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import T5ForConditionalGeneration, T5Tokenizer
# Load model and tokenizer
model = T5ForConditionalGeneration.from_pretrained("gcuomo/open-source-ai-t5-liar-lens")
tokenizer = T5Tokenizer.from_pretrained("gcuomo/open-source-ai-t5-liar-lens")
# Shared prediction function
def classify(statement):
prompt = f"summarize: {statement}"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
output = model.generate(**inputs, max_new_tokens=8)
return tokenizer.decode(output[0], skip_special_tokens=True).strip().lower()
# Build UI with Blocks
with gr.Blocks() as demo:
gr.Markdown("## 🤥 Open Source AI – LIAR Lens")
with gr.Row():
inp = gr.Textbox(label="Enter a statement", lines=2, placeholder="e.g. The book 'Open Source AI' explores Hugging Face and T5 models.")
out = gr.Textbox(label="Predicted label")
btn = gr.Button("Classify")
btn.click(fn=classify, inputs=inp, outputs=out)
# Register for remote access via gradio_client
demo.predict = classify # 👈 this makes remote .predict(...) possible
# Enable queueing and launch
demo.queue()
demo.launch()
|