lokeshloki143's picture
Update app.py
eb7f886 verified
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import os
from fastapi import FastAPI
from pydantic import BaseModel
from simple_salesforce import Salesforce
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Salesforce connection
def get_salesforce_connection():
try:
# Load credentials from environment variables
username = os.getenv("SF_USERNAME")
password = os.getenv("SF_PASSWORD")
security_token = os.getenv("SF_SECURITY_TOKEN")
domain = os.getenv("SF_DOMAIN", "login") # Default to production (login.salesforce.com)
# Validate credentials
if not all([username, password, security_token, domain]):
missing = []
if not username:
missing.append("SF_USERNAME")
if not password:
missing.append("SF_PASSWORD")
if not security_token:
missing.append("SF_SECURITY_TOKEN")
if not domain:
missing.append("SF_DOMAIN")
raise ValueError(f"Missing environment variables: {', '.join(missing)}. Set them in .env or Space environment variables.")
# Ensure all are strings
if not all(isinstance(x, str) for x in [username, password, security_token, domain]):
raise ValueError("All Salesforce credentials (SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, SF_DOMAIN) must be strings.")
sf = Salesforce(
username=username,
password=password,
security_token=security_token,
domain=domain
)
# Test connection by fetching user info
sf.User.get(sf.user_id)
return sf
except Exception as e:
raise Exception(f"Failed to connect to Salesforce: {str(e)}")
# Load Hugging Face token
HF_TOKEN = os.getenv("HF_TOKEN")
# Model configuration
MODEL_PATH = "facebook/bart-large" # Public model
# MODEL_PATH = "your_actual_username/fine_tuned_bart_construction" # Uncomment after uploading
try:
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH, use_auth_token=HF_TOKEN if HF_TOKEN else None)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_auth_token=HF_TOKEN if HF_TOKEN else None)
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}")
# Define input model for FastAPI
class ChecklistInput(BaseModel):
role: str = "Supervisor"
project_id: str = "Unknown"
project_name: str = "Unknown Project"
milestones: str = "No milestones provided"
record_id: str = None
supervisor_id: str = None
project_id_sf: str = None
reflection_log: str = None
download_link: str = None
# Initialize FastAPI
app = FastAPI()
@app.post("/generate")
async def generate_checklist(data: ChecklistInput):
try:
inputs = f"Role: {data.role} Project: {data.project_id} ({data.project_name}) Milestones: {data.milestones}"
input_ids = tokenizer(inputs, return_tensors="pt", max_length=128, truncation=True).input_ids
outputs = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True)
checklist = tokenizer.decode(outputs[0], skip_special_tokens=True)
tips = "1. Prioritize safety checks\n2. Review milestones\n3. Log progress"
kpi_flag = "delay" in data.milestones.lower() or "behind" in data.milestones.lower()
if data.record_id:
sf = get_salesforce_connection()
existing_record = sf.Supervisor_AI_Coaching__c.get(data.record_id, default={
'Name': '',
'Supervisor_ID__c': None,
'Project_ID__c': None,
'Reflection_Log__c': '',
'Download_Link__c': '',
'Engagement_Score__c': 0,
'KPI_Flag__c': False,
'Daily_Checklist__c': '',
'Suggested_Tips__c': ''
})
update_data = {
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': tips,
'Engagement_Score__c': existing_record.get('Engagement_Score__c', 0) + 10,
'KPI_Flag__c': kpi_flag,
'Supervisor_ID__c': data.supervisor_id if data.supervisor_id else existing_record.get('Supervisor_ID__c'),
'Project_ID__c': data.project_id_sf if data.project_id_sf else existing_record.get('Project_ID__c'),
'Reflection_Log__c': data.reflection_log if data.reflection_log else existing_record.get('Reflection_Log__c', ''),
'Download_Link__c': data.download_link if data.download_link else existing_record.get('Download_Link__c', '')
}
sf.Supervisor_AI_Coaching__c.update(data.record_id, update_data)
return {
"checklist": checklist,
"tips": tips,
"kpi_flag": kpi_flag
}
except Exception as e:
return {"error": str(e)}
# Login and display records
def login_and_display(project_id_sf):
try:
sf = get_salesforce_connection()
query = f"SELECT Id, Name, Supervisor_ID__c, Project_ID__c, Daily_Checklist__c, Suggested_Tips__c, Reflection_Log__c, Engagement_Score__c, KPI_Flag__c, Download_Link__c FROM Supervisor_AI_Coaching__c WHERE Project_ID__c = '{project_id_sf}'"
records = sf.query(query)["records"]
if not records:
return "No records found for Project ID.", "", False
output = "Supervisor_AI_Coaching__c Records:\n"
for record in records:
output += (
f"Record ID: {record['Id']}\n"
f"Name: {record['Name']}\n"
f"Supervisor ID: {record['Supervisor_ID__c']}\n"
f"Project ID: {record['Project_ID__c']}\n"
f"Daily Checklist: {record['Daily_Checklist__c'] or 'N/A'}\n"
f"Suggested Tips: {record['Suggested_Tips__c'] or 'N/A'}\n"
f"Reflection Log: {record['Reflection_Log__c'] or 'N/A'}\n"
f"Engagement Score: {record['Engagement_Score__c'] or 0}%\n"
f"KPI Flag: {record['KPI_Flag__c']}\n"
f"Download Link: {record['Download_Link__c'] or 'N/A'}\n"
f"{'-'*50}\n"
)
return output, "", False
except Exception as e:
return f"Error querying Salesforce: {str(e)}", "", False
# Generate checklist from record
def gradio_generate_checklist(record_id, role="Supervisor", project_id="Unknown", project_name="Unknown Project", milestones="No milestones provided", supervisor_id="", project_id_sf="", reflection_log="", download_link=""):
try:
sf = get_salesforce_connection()
existing_record = sf.Supervisor_AI_Coaching__c.get(record_id, default={
'Name': '',
'Supervisor_ID__c': None,
'Project_ID__c': None,
'Reflection_Log__c': '',
'Download_Link__c': '',
'Engagement_Score__c': 0,
'KPI_Flag__c': False,
'Daily_Checklist__c': '',
'Suggested_Tips__c': ''
})
inputs = f"Role: {role} Project: {project_id} ({project_name}) Milestones: {milestones}"
input_ids = tokenizer(inputs, return_tensors="pt", max_length=128, truncation=True).input_ids
outputs = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True)
checklist = tokenizer.decode(outputs[0], skip_special_tokens=True)
tips = "1. Prioritize safety checks\n2. Review milestones\n3. Log progress"
kpi_flag = "delay" in milestones.lower() or "behind" in milestones.lower()
update_data = {
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': tips,
'Engagement_Score__c': existing_record.get('Engagement_Score__c', 0) + 10,
'KPI_Flag__c': kpi_flag,
'Supervisor_ID__c': supervisor_id if supervisor_id else existing_record.get('Supervisor_ID__c'),
'Project_ID__c': project_id_sf if project_id_sf else existing_record.get('Project_ID__c'),
'Reflection_Log__c': reflection_log if reflection_log else existing_record.get('Reflection_Log__c', ''),
'Download_Link__c': download_link if download_link else existing_record.get('Download_Link__c', '')
}
sf.Supervisor_AI_Coaching__c.update(record_id, update_data)
status = f"Updated Salesforce record {record_id}"
return checklist, tips, kpi_flag, status
except Exception as e:
return f"Error: {str(e)}", "", False, ""
# Define Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# AI Coach for Site Supervisors")
gr.Markdown("Enter a Project ID to view Supervisor_AI_Coaching__c records and generate checklists.")
with gr.Tab("Login"):
project_id_input = gr.Textbox(label="Project ID (Salesforce Project__c ID)", placeholder="Enter Project ID")
login_button = gr.Button("Submit")
records_output = gr.Textbox(label="Records", lines=10)
login_button.click(
fn=login_and_display,
inputs=project_id_input,
outputs=[records_output, gr.Textbox(visible=False), gr.Checkbox(visible=False)]
)
with gr.Tab("Generate Checklist"):
record_id = gr.Textbox(label="Record ID", placeholder="Enter Record ID from above")
role = gr.Textbox(label="Role", value="Supervisor")
project_id = gr.Textbox(label="Project ID", value="P001")
project_name = gr.Textbox(label="Project Name", value="Building A")
milestones = gr.Textbox(label="Milestones", value="Complete foundation by 5/15")
supervisor_id = gr.Textbox(label="Supervisor ID (Salesforce User ID, optional)", value="")
project_id_sf = gr.Textbox(label="Project ID (Salesforce Project__c ID, optional)", value="")
reflection_log = gr.Textbox(label="Reflection Log (optional)", value="")
download_link = gr.Textbox(label="Download Link (optional)", value="")
generate_button = gr.Button("Generate and Update")
checklist_output = gr.Textbox(label="Checklist")
tips_output = gr.Textbox(label="Tips")
kpi_flag_output = gr.Checkbox(label="KPI Flag")
status_output = gr.Textbox(label="Salesforce Status")
generate_button.click(
fn=gradio_generate_checklist,
inputs=[record_id, role, project_id, project_name, milestones, supervisor_id, project_id_sf, reflection_log, download_link],
outputs=[checklist_output, tips_output, kpi_flag_output, status_output]
)
# Mount FastAPI
iface.app = app
if __name__ == "__main__":
try:
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
print(f"Failed to launch Gradio: {str(e)}")