File size: 13,821 Bytes
ed02923
736dc08
 
d1f37f7
 
 
 
 
 
 
 
 
 
5d49b9a
 
 
6b6bb20
 
 
 
 
 
 
d1f37f7
 
 
 
6b6bb20
 
 
d1f37f7
 
 
 
 
 
736dc08
d72f55d
736dc08
68fbf1b
d72f55d
 
 
d1f37f7
68fbf1b
 
736dc08
d72f55d
 
 
 
736dc08
68fbf1b
 
 
d72f55d
 
68fbf1b
 
736dc08
d72f55d
736dc08
68fbf1b
736dc08
d72f55d
736dc08
6b6bb20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736dc08
d1f37f7
d72f55d
736dc08
d1f37f7
736dc08
 
d72f55d
 
 
d1f37f7
d72f55d
 
 
 
 
 
 
 
 
 
 
 
736dc08
d72f55d
736dc08
 
 
d1f37f7
68fbf1b
d72f55d
 
736dc08
 
d72f55d
 
 
 
 
d1f37f7
 
d72f55d
736dc08
d72f55d
d1f37f7
d72f55d
 
 
 
 
 
 
 
d1f37f7
d72f55d
 
 
 
 
 
 
 
 
 
 
d1f37f7
d72f55d
736dc08
d72f55d
68fbf1b
d72f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1f37f7
1e013de
736dc08
 
 
6b6bb20
 
d1f37f7
 
 
 
 
6b6bb20
 
 
 
 
 
d1f37f7
6b6bb20
 
 
 
 
 
 
 
 
 
 
 
d1f37f7
6b6bb20
 
 
 
 
 
d1f37f7
6b6bb20
 
 
 
d1f37f7
1e013de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6bb20
 
 
 
 
 
d1f37f7
6b6bb20
 
d1f37f7
6b6bb20
 
d1f37f7
6b6bb20
d1f37f7
736dc08
d1f37f7
736dc08
68fbf1b
736dc08
d72f55d
1e013de
d72f55d
 
 
 
 
 
 
 
 
1e013de
 
 
 
d72f55d
 
 
d1f37f7
6b6bb20
 
 
 
 
 
d1f37f7
6b6bb20
1e013de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736dc08
 
 
d72f55d
 
 
 
6b6bb20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
from datetime import datetime
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Salesforce credentials (use environment variables for security)
SF_USERNAME = os.getenv('Ai@Coach.com')
SF_PASSWORD = os.getenv('Teja90325@')
SF_SECURITY_TOKEN = os.getenv('clceSdBgQ30Rx9BSC66gAcRx')
SF_DOMAIN = os.getenv('SF_DOMAIN', 'login')  # Default to 'login' if not set
HUGGINGFACE_API_KEY = os.getenv('HUGGINGFACE_API_KEY')

# Validate that environment variables are set
if not all([SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, HUGGINGFACE_API_KEY]):
    logger.error("Missing required environment variables (SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, or HUGGINGFACE_API_KEY)")
    raise ValueError("Missing required environment variables. Please set SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, and HUGGINGFACE_API_KEY.")

# Initialize Salesforce connection
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        domain=SF_DOMAIN
    )
    logger.info("Successfully connected to Salesforce")
except Exception as e:
    logger.error(f"Failed to connect to Salesforce: {e}")
    sf = None

# Initialize model and tokenizer
model_name = "distilgpt2"
try:
    tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache")
    model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache")
except Exception as e:
    logger.error(f"Error loading model: {e}")
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)

# Set pad_token to eos_token if not already set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
    model.config.pad_token_id = tokenizer.eos_token_id

# Simplified prompt template
PROMPT_TEMPLATE = """Role: {role}
Project: {project_id}
Milestones: 
- {milestones_list}
Reflection: {reflection}
Generate:
Checklist:
- {milestones_list}
Suggestions:
{suggestions_list}
Quote:
{your_motivational_quote}"""

def fetch_salesforce_data_for_role(role):
    """Fetch Project__c records from Salesforce based on the selected role."""
    if sf is None:
        logger.error("Salesforce connection not initialized")
        return None, None, None, "Error: Salesforce connection not initialized"

    try:
        # Query Project__c records where the Supervisor's role matches the selected role
        query = f"""
            SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c, 
                   Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c
            FROM Project__c
            WHERE Supervisor__r.Role__c = '{role}' AND Milestones__c != null
            LIMIT 1
        """
        projects = sf.query(query)['records']
        if not projects:
            logger.info(f"No projects found for role: {role}")
            return None, None, None, f"No projects found for role: {role}"

        project = projects[0]  # Take the first project
        project_id = project['Name']
        milestones = project['Milestones__c'] or 'No milestones'
        reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}"
        logger.info(f"Fetched project {project_id} for role {role}")
        return project, project_id, milestones, reflection
    except Exception as e:
        logger.error(f"Error fetching Salesforce data: {e}")
        return None, None, None, f"Error fetching Salesforce data: {e}"

def generate_outputs(role, project_id, milestones, reflection):
    """Generate checklist, suggestions, and quote using distilgpt2."""
    # Input validation
    if not all([role, project_id, milestones, reflection]):
        logger.error("All fields are required")
        return "Error: All fields are required.", "", ""
    
    # Process milestones
    milestones_list = "\n- ".join([m.strip() for m in milestones.split(",") if m.strip()])
    if not milestones_list:
        logger.error("At least one valid milestone is required")
        return "Error: At least one valid milestone is required.", "", ""
    
    # Generate suggestions based on reflection
    suggestions_list = []
    reflection_lower = reflection.lower()
    if "delays" in reflection_lower:
        suggestions_list.extend(["Adjust timelines for delays.", "Communicate with stakeholders."])
    if "weather" in reflection_lower:
        suggestions_list.extend(["Ensure rain gear availability.", "Monitor weather updates."])
    if "equipment" in reflection_lower:
        suggestions_list.extend(["Inspect equipment.", "Schedule maintenance."])
    suggestions_list = "\n- ".join(suggestions_list) if suggestions_list else "No specific suggestions."

    # Format prompt
    prompt = PROMPT_TEMPLATE.format(
        role=role,
        project_id=project_id,
        milestones_list=milestones_list.replace("\n- ", "\n- "),
        reflection=reflection,
        suggestions_list=suggestions_list,
        your_motivational_quote="Your motivational quote here"
    )

    # Tokenize input
    try:
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            max_length=512,
            truncation=True,
            padding=True
        )
    except Exception as e:
        logger.error(f"Error in tokenization: {e}")
        return f"Error in tokenization: {e}", "", ""

    # Generate output
    try:
        with torch.no_grad():
            outputs = model.generate(
                input_ids=inputs['input_ids'],
                attention_mask=inputs['attention_mask'],
                max_length=600,
                num_return_sequences=1,
                no_repeat_ngram_size=2,
                top_k=50,
                top_p=0.95,
                temperature=0.7,
                pad_token_id=tokenizer.eos_token_id,
                do_sample=True
            )
        
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        logger.error(f"Error in generation: {e}")
        return f"Error in generation: {e}", "", ""

    # Extract sections
    checklist = suggestions = quote = "Not generated."
    try:
        if "Checklist:" in generated_text:
            checklist_start = generated_text.find("Checklist:") + 10
            suggestions_start = generated_text.find("Suggestions:", checklist_start)
            if suggestions_start == -1:
                suggestions_start = len(generated_text)
            checklist = generated_text[checklist_start:suggestions_start].strip()

        if "Suggestions:" in generated_text:
            suggestions_start = generated_text.find("Suggestions:") + 12
            quote_start = generated_text.find("Quote:", suggestions_start)
            if quote_start == -1:
                quote_start = len(generated_text)
            suggestions = generated_text[suggestions_start:quote_start].strip()

        if "Quote:" in generated_text:
            quote_start = generated_text.find("Quote:") + 7
            quote = generated_text[quote_start:].strip()
    except Exception as e:
        logger.error(f"Error parsing output: {e}")
        return f"Error parsing output: {e}", "", ""

    return checklist, suggestions, quote

def store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote):
    """Store the generated outputs in Salesforce Supervisor_AI_Coaching__c."""
    if sf is None:
        logger.error("Salesforce connection not initialized")
        return "Error: Salesforce connection not initialized"

    try:
        # Update or create Supervisor_AI_Coaching__c record
        coaching_query = f"""
            SELECT Id
            FROM Supervisor_AI_Coaching__c
            WHERE Project_ID__c = '{project['Id']}'
            LIMIT 1
        """
        coaching_records = sf.query(coaching_query)['records']

        coaching_data = {
            'Project_ID__c': project['Id'],
            'Supervisor_ID__c': project['Supervisor__c'],
            'Daily_Checklist__c': checklist,
            'Suggested_Tips__c': suggestions,
            'Reflection_Log__c': reflection,
            'Last_Refresh_Date__c': datetime.utcnow().isoformat(),
            'Engagement_Score__c': 50 if checklist != 'Not generated.' else 0,
            'KPI_Flag__c': 'delay' in suggestions.lower() or 'issue' in suggestions.lower()
        }

        if coaching_records:
            sf.Supervisor_AI_Coaching__c.update(coaching_records[0]['Id'], coaching_data)
            logger.info(f"Updated Supervisor_AI_Coaching__c for Project {project_id}")
        else:
            sf.Supervisor_AI_Coaching__c.create(coaching_data)
            logger.info(f"Created Supervisor_AI_Coaching__c for Project {project_id}")

        return f"Successfully stored data for Project {project_id} in Salesforce"
    except Exception as e:
        logger.error(f"Error storing data in Salesforce: {e}")
        return f"Error storing data in Salesforce: {e}"

def fetch_and_process_salesforce_data():
    """Fetch Project__c records from Salesforce and generate AI outputs."""
    if sf is None:
        logger.error("Salesforce connection not initialized")
        return "Error: Salesforce connection not initialized"

    try:
        # Query Project__c records
        query = """
            SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c, 
                   Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c
            FROM Project__c
            WHERE Milestones__c != null
            LIMIT 10
        """
        projects = sf.query(query)['records']
        logger.info(f"Fetched {len(projects)} Project__c records")

        for project in projects:
            role = project['Supervisor__r']['Role__c'] if project['Supervisor__r'] is not None else 'Supervisor'
            project_id = project['Name']
            milestones = project['Milestones__c'] or 'No milestones'
            reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}"

            # Generate AI outputs
            checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection)
            logger.info(f"Generated outputs for Project {project_id}")

            # Store in Salesforce
            store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote)

        return f"Processed {len(projects)} projects successfully"
    except Exception as e:
        logger.error(f"Error processing Salesforce data: {e}")
        return f"Error processing Salesforce data: {e}"

def on_role_change(role):
    """Handle role selection change, fetch Salesforce data, generate outputs, and store in Salesforce."""
    # Fetch data from Salesforce based on the selected role
    project, project_id, milestones, reflection = fetch_salesforce_data_for_role(role)
    if project is None:
        return "", "", "", "", project_id, milestones, reflection

    # Generate outputs
    checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection)

    # Store the generated outputs in Salesforce
    store_result = store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote)

    return checklist, suggestions, quote, store_result, project_id, milestones, reflection

def create_interface():
    """Create Gradio interface for manual testing."""
    with gr.Blocks() as demo:
        gr.Markdown("### Construction Supervisor AI Coach")
        with gr.Row():
            role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role", value="Supervisor")
            project_id = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-123")
        milestones = gr.Textbox(
            label="Milestones (comma-separated)",
            placeholder="e.g., Foundation complete, Framing started, Roof installed"
        )
        reflection = gr.Textbox(
            label="Reflection",
            lines=3,
            placeholder="e.g., Facing delays due to weather and equipment issues."
        )
        with gr.Row():
            submit = gr.Button("Generate")
            clear = gr.Button("Clear")
            sf_button = gr.Button("Process Salesforce Data")
        checklist_output = gr.Textbox(label="Checklist", lines=4)
        suggestions_output = gr.Textbox(label="Suggestions", lines=4)
        quote_output = gr.Textbox(label="Quote", lines=2)
        sf_output = gr.Textbox(label="Salesforce Processing Result", lines=2)

        # Fetch data, generate outputs, and store in Salesforce when role changes
        role.change(
            fn=on_role_change,
            inputs=role,
            outputs=[checklist_output, suggestions_output, quote_output, sf_output, project_id, milestones, reflection]
        )

        submit.click(
            fn=generate_outputs,
            inputs=[role, project_id, milestones, reflection],
            outputs=[checklist_output, suggestions_output, quote_output]
        )
        clear.click(
            fn=lambda: ("Supervisor", "", "", ""),
            inputs=None,
            outputs=[role, project_id, milestones, reflection]
        )
        sf_button.click(
            fn=fetch_and_process_salesforce_data,
            inputs=None,
            outputs=sf_output
        )
    
    return demo

if __name__ == "__main__":
    try:
        demo = create_interface()
        demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
    except Exception as e:
        logger.error(f"Error launching Gradio interface: {e}")