Spaces:
Runtime error
Runtime error
File size: 13,821 Bytes
ed02923 736dc08 d1f37f7 5d49b9a 6b6bb20 d1f37f7 6b6bb20 d1f37f7 736dc08 d72f55d 736dc08 68fbf1b d72f55d d1f37f7 68fbf1b 736dc08 d72f55d 736dc08 68fbf1b d72f55d 68fbf1b 736dc08 d72f55d 736dc08 68fbf1b 736dc08 d72f55d 736dc08 6b6bb20 736dc08 d1f37f7 d72f55d 736dc08 d1f37f7 736dc08 d72f55d d1f37f7 d72f55d 736dc08 d72f55d 736dc08 d1f37f7 68fbf1b d72f55d 736dc08 d72f55d d1f37f7 d72f55d 736dc08 d72f55d d1f37f7 d72f55d d1f37f7 d72f55d d1f37f7 d72f55d 736dc08 d72f55d 68fbf1b d72f55d d1f37f7 1e013de 736dc08 6b6bb20 d1f37f7 6b6bb20 d1f37f7 6b6bb20 d1f37f7 6b6bb20 d1f37f7 6b6bb20 d1f37f7 1e013de 6b6bb20 d1f37f7 6b6bb20 d1f37f7 6b6bb20 d1f37f7 6b6bb20 d1f37f7 736dc08 d1f37f7 736dc08 68fbf1b 736dc08 d72f55d 1e013de d72f55d 1e013de d72f55d d1f37f7 6b6bb20 d1f37f7 6b6bb20 1e013de 736dc08 d72f55d 6b6bb20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Salesforce credentials (use environment variables for security)
SF_USERNAME = os.getenv('Ai@Coach.com')
SF_PASSWORD = os.getenv('Teja90325@')
SF_SECURITY_TOKEN = os.getenv('clceSdBgQ30Rx9BSC66gAcRx')
SF_DOMAIN = os.getenv('SF_DOMAIN', 'login') # Default to 'login' if not set
HUGGINGFACE_API_KEY = os.getenv('HUGGINGFACE_API_KEY')
# Validate that environment variables are set
if not all([SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, HUGGINGFACE_API_KEY]):
logger.error("Missing required environment variables (SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, or HUGGINGFACE_API_KEY)")
raise ValueError("Missing required environment variables. Please set SF_USERNAME, SF_PASSWORD, SF_SECURITY_TOKEN, and HUGGINGFACE_API_KEY.")
# Initialize Salesforce connection
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
domain=SF_DOMAIN
)
logger.info("Successfully connected to Salesforce")
except Exception as e:
logger.error(f"Failed to connect to Salesforce: {e}")
sf = None
# Initialize model and tokenizer
model_name = "distilgpt2"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache")
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache")
except Exception as e:
logger.error(f"Error loading model: {e}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set pad_token to eos_token if not already set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
# Simplified prompt template
PROMPT_TEMPLATE = """Role: {role}
Project: {project_id}
Milestones:
- {milestones_list}
Reflection: {reflection}
Generate:
Checklist:
- {milestones_list}
Suggestions:
{suggestions_list}
Quote:
{your_motivational_quote}"""
def fetch_salesforce_data_for_role(role):
"""Fetch Project__c records from Salesforce based on the selected role."""
if sf is None:
logger.error("Salesforce connection not initialized")
return None, None, None, "Error: Salesforce connection not initialized"
try:
# Query Project__c records where the Supervisor's role matches the selected role
query = f"""
SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c,
Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c
FROM Project__c
WHERE Supervisor__r.Role__c = '{role}' AND Milestones__c != null
LIMIT 1
"""
projects = sf.query(query)['records']
if not projects:
logger.info(f"No projects found for role: {role}")
return None, None, None, f"No projects found for role: {role}"
project = projects[0] # Take the first project
project_id = project['Name']
milestones = project['Milestones__c'] or 'No milestones'
reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}"
logger.info(f"Fetched project {project_id} for role {role}")
return project, project_id, milestones, reflection
except Exception as e:
logger.error(f"Error fetching Salesforce data: {e}")
return None, None, None, f"Error fetching Salesforce data: {e}"
def generate_outputs(role, project_id, milestones, reflection):
"""Generate checklist, suggestions, and quote using distilgpt2."""
# Input validation
if not all([role, project_id, milestones, reflection]):
logger.error("All fields are required")
return "Error: All fields are required.", "", ""
# Process milestones
milestones_list = "\n- ".join([m.strip() for m in milestones.split(",") if m.strip()])
if not milestones_list:
logger.error("At least one valid milestone is required")
return "Error: At least one valid milestone is required.", "", ""
# Generate suggestions based on reflection
suggestions_list = []
reflection_lower = reflection.lower()
if "delays" in reflection_lower:
suggestions_list.extend(["Adjust timelines for delays.", "Communicate with stakeholders."])
if "weather" in reflection_lower:
suggestions_list.extend(["Ensure rain gear availability.", "Monitor weather updates."])
if "equipment" in reflection_lower:
suggestions_list.extend(["Inspect equipment.", "Schedule maintenance."])
suggestions_list = "\n- ".join(suggestions_list) if suggestions_list else "No specific suggestions."
# Format prompt
prompt = PROMPT_TEMPLATE.format(
role=role,
project_id=project_id,
milestones_list=milestones_list.replace("\n- ", "\n- "),
reflection=reflection,
suggestions_list=suggestions_list,
your_motivational_quote="Your motivational quote here"
)
# Tokenize input
try:
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
except Exception as e:
logger.error(f"Error in tokenization: {e}")
return f"Error in tokenization: {e}", "", ""
# Generate output
try:
with torch.no_grad():
outputs = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=600,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id,
do_sample=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Error in generation: {e}")
return f"Error in generation: {e}", "", ""
# Extract sections
checklist = suggestions = quote = "Not generated."
try:
if "Checklist:" in generated_text:
checklist_start = generated_text.find("Checklist:") + 10
suggestions_start = generated_text.find("Suggestions:", checklist_start)
if suggestions_start == -1:
suggestions_start = len(generated_text)
checklist = generated_text[checklist_start:suggestions_start].strip()
if "Suggestions:" in generated_text:
suggestions_start = generated_text.find("Suggestions:") + 12
quote_start = generated_text.find("Quote:", suggestions_start)
if quote_start == -1:
quote_start = len(generated_text)
suggestions = generated_text[suggestions_start:quote_start].strip()
if "Quote:" in generated_text:
quote_start = generated_text.find("Quote:") + 7
quote = generated_text[quote_start:].strip()
except Exception as e:
logger.error(f"Error parsing output: {e}")
return f"Error parsing output: {e}", "", ""
return checklist, suggestions, quote
def store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote):
"""Store the generated outputs in Salesforce Supervisor_AI_Coaching__c."""
if sf is None:
logger.error("Salesforce connection not initialized")
return "Error: Salesforce connection not initialized"
try:
# Update or create Supervisor_AI_Coaching__c record
coaching_query = f"""
SELECT Id
FROM Supervisor_AI_Coaching__c
WHERE Project_ID__c = '{project['Id']}'
LIMIT 1
"""
coaching_records = sf.query(coaching_query)['records']
coaching_data = {
'Project_ID__c': project['Id'],
'Supervisor_ID__c': project['Supervisor__c'],
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': suggestions,
'Reflection_Log__c': reflection,
'Last_Refresh_Date__c': datetime.utcnow().isoformat(),
'Engagement_Score__c': 50 if checklist != 'Not generated.' else 0,
'KPI_Flag__c': 'delay' in suggestions.lower() or 'issue' in suggestions.lower()
}
if coaching_records:
sf.Supervisor_AI_Coaching__c.update(coaching_records[0]['Id'], coaching_data)
logger.info(f"Updated Supervisor_AI_Coaching__c for Project {project_id}")
else:
sf.Supervisor_AI_Coaching__c.create(coaching_data)
logger.info(f"Created Supervisor_AI_Coaching__c for Project {project_id}")
return f"Successfully stored data for Project {project_id} in Salesforce"
except Exception as e:
logger.error(f"Error storing data in Salesforce: {e}")
return f"Error storing data in Salesforce: {e}"
def fetch_and_process_salesforce_data():
"""Fetch Project__c records from Salesforce and generate AI outputs."""
if sf is None:
logger.error("Salesforce connection not initialized")
return "Error: Salesforce connection not initialized"
try:
# Query Project__c records
query = """
SELECT Id, Name, Project_Name__c, Milestones__c, Weather_Log__c,
Supervisor__r.Role__c, Supervisor__r.Name, Supervisor__c
FROM Project__c
WHERE Milestones__c != null
LIMIT 10
"""
projects = sf.query(query)['records']
logger.info(f"Fetched {len(projects)} Project__c records")
for project in projects:
role = project['Supervisor__r']['Role__c'] if project['Supervisor__r'] is not None else 'Supervisor'
project_id = project['Name']
milestones = project['Milestones__c'] or 'No milestones'
reflection = f"Weather: {project['Weather_Log__c'] or 'Sunny, 25°C'}"
# Generate AI outputs
checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection)
logger.info(f"Generated outputs for Project {project_id}")
# Store in Salesforce
store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote)
return f"Processed {len(projects)} projects successfully"
except Exception as e:
logger.error(f"Error processing Salesforce data: {e}")
return f"Error processing Salesforce data: {e}"
def on_role_change(role):
"""Handle role selection change, fetch Salesforce data, generate outputs, and store in Salesforce."""
# Fetch data from Salesforce based on the selected role
project, project_id, milestones, reflection = fetch_salesforce_data_for_role(role)
if project is None:
return "", "", "", "", project_id, milestones, reflection
# Generate outputs
checklist, suggestions, quote = generate_outputs(role, project_id, milestones, reflection)
# Store the generated outputs in Salesforce
store_result = store_in_salesforce(project, role, project_id, milestones, reflection, checklist, suggestions, quote)
return checklist, suggestions, quote, store_result, project_id, milestones, reflection
def create_interface():
"""Create Gradio interface for manual testing."""
with gr.Blocks() as demo:
gr.Markdown("### Construction Supervisor AI Coach")
with gr.Row():
role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role", value="Supervisor")
project_id = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-123")
milestones = gr.Textbox(
label="Milestones (comma-separated)",
placeholder="e.g., Foundation complete, Framing started, Roof installed"
)
reflection = gr.Textbox(
label="Reflection",
lines=3,
placeholder="e.g., Facing delays due to weather and equipment issues."
)
with gr.Row():
submit = gr.Button("Generate")
clear = gr.Button("Clear")
sf_button = gr.Button("Process Salesforce Data")
checklist_output = gr.Textbox(label="Checklist", lines=4)
suggestions_output = gr.Textbox(label="Suggestions", lines=4)
quote_output = gr.Textbox(label="Quote", lines=2)
sf_output = gr.Textbox(label="Salesforce Processing Result", lines=2)
# Fetch data, generate outputs, and store in Salesforce when role changes
role.change(
fn=on_role_change,
inputs=role,
outputs=[checklist_output, suggestions_output, quote_output, sf_output, project_id, milestones, reflection]
)
submit.click(
fn=generate_outputs,
inputs=[role, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, quote_output]
)
clear.click(
fn=lambda: ("Supervisor", "", "", ""),
inputs=None,
outputs=[role, project_id, milestones, reflection]
)
sf_button.click(
fn=fetch_and_process_salesforce_data,
inputs=None,
outputs=sf_output
)
return demo
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
logger.error(f"Error launching Gradio interface: {e}") |