File size: 36,062 Bytes
8dd63c7 0be12e5 9c381a4 606fc59 9c381a4 3a9040c 9c381a4 606fc59 9c381a4 5fe248c e5f7d13 9c381a4 88d21db 5fe248c 5db9c39 5fe248c 5db9c39 5fe248c 5db9c39 5fe248c 5e0b62f 5db9c39 5fe248c 21f0b5d 5fe248c 9c381a4 5fe248c 5e0b62f 5fe248c 5e0b62f 5ca73d2 5e0b62f c4ef1af 5fe248c 8ddd174 5fe248c 8ddd174 5fe248c 21f0b5d 5fe248c 5db9c39 5fe248c 3a9040c 5fe248c 2d61d9f 5fe248c 5db9c39 5fe248c 2d61d9f 5fe248c 5db9c39 5fe248c 2d61d9f 5fe248c 21f0b5d 5e0b62f 5db9c39 21f0b5d ec84119 5db9c39 ec84119 5db9c39 ec84119 5db9c39 ec84119 5e0b62f 5db9c39 5fe248c b594bd7 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c 2d61d9f 0156651 2d61d9f 5fe248c 4428565 5fe248c b594bd7 5fe248c d311f25 5fe248c d311f25 5fe248c d311f25 5fe248c d311f25 5fe248c d311f25 5fe248c b594bd7 5fe248c 4428565 5fe248c d311f25 5fe248c b594bd7 5fe248c b0da9a8 5fe248c b0da9a8 5fe248c 8ddd174 5fe248c d311f25 5fe248c 5ca73d2 5fe248c 2d61d9f 5fe248c 21f0b5d 5fe248c 5db9c39 5fe248c b594bd7 5fe248c 2d61d9f 5fe248c b594bd7 fcc5222 5fe248c d311f25 5fe248c 2d61d9f 5fe248c 2d61d9f 5fe248c b594bd7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c ad90cc7 5fe248c 5db9c39 5fe248c b594bd7 5fe248c b594bd7 5db9c39 b594bd7 5fe248c 5db9c39 5fe248c b594bd7 5fe248c 4428565 5fe248c 12588a9 5fe248c ad90cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from simple_salesforce import Salesforce
import os
from datetime import datetime
import logging
import webrtcvad
import google.generativeai as genai
from gtts import gTTS
import tempfile
import base64
import re
from cryptography.fernet import Fernet
import pytz
from reportlab.lib.pagesizes import A4
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, ListFlowable, ListItem
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
import asyncio
import hashlib
from functools import lru_cache
# Set up logging with DEBUG level, adjusted for IST
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
usage_metrics = {"total_assessments": 0, "assessments_by_language": {}}
# Environment variables
SF_USERNAME = os.getenv("SF_USERNAME", "smartvoicebot@voice.com")
SF_PASSWORD = os.getenv("SF_PASSWORD", "voicebot1")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "jq4VVHUFti6TmzJDjjegv2h6b")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://swe42.sfdc-cehfhs.salesforce.com")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "AIzaSyBzr5vVpbe8CV1v70l3pGDp9vRJ76yCxdk")
ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode())
DEFAULT_EMAIL = os.getenv("SALESFORCE_USER_EMAIL", "default@mindcare.com")
# Initialize encryption
cipher = Fernet(ENCRYPTION_KEY)
# Initialize Salesforce
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
instance_url=SF_INSTANCE_URL
)
logger.info(f"Connected to Salesforce at {SF_INSTANCE_URL}")
except Exception as e:
logger.error(f"Salesforce connection failed: {str(e)}")
sf = None
# Initialize Google Gemini
try:
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
chat = gemini_model.start_chat(history=[])
logger.info("Connected to Google Gemini")
except Exception as e:
logger.error(f"Google Gemini initialization failed: {str(e)}")
chat = None
# Load Whisper model
SUPPORTED_LANGUAGES = {"English": "english", "Hindi": "hindi", "Spanish": "spanish", "Mandarin": "mandarin"}
SALESFORCE_LANGUAGE_MAP = {"English": "English", "Hindi": "Hindi", "Spanish": "Spanish", "Mandarin": "Mandarin"}
LANGUAGE_CODES = {"English": "en", "Hindi": "hi", "Spanish": "es", "Mandarin": "zh"}
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
vad = webrtcvad.Vad(mode=2)
# Context for chatbot
base_info = """
MindCare is an AI health assistant focused on:
- **Mental health**: Emotional support, mindfulness, stress-relief, anxiety management.
- **Medical guidance**: Symptom analysis, possible conditions, medicine recommendations.
- **Decision-making**: Personal, professional, emotional choices.
- **General health**: Lifestyle, nutrition, physical and mental wellness.
- **Emergency assistance**: Suggest professional help or helplines for distress.
Tone: Empathetic, supportive, informative.
"""
mental_health = """
For stress/anxiety:
- Suggest mindfulness, deep breathing, gratitude journaling.
- Encourage breaks, hobbies, nature.
- Provide affirmations, self-care routines.
For distress:
- Offer emotional support, assure they’re not alone.
- Suggest trusted contacts or professionals.
- Provide crisis helplines.
"""
medical_assistance = """
For symptoms:
- Analyze and suggest possible conditions.
- Offer general advice, not replacing doctor consultation.
- Suggest lifestyle changes, home remedies.
- Advise medical attention for severe symptoms.
"""
medicine_recommendation = """
For medicine queries:
- Suggest common antibiotics (e.g., Amoxicillin), painkillers (e.g., Paracetamol, Ibuprofen).
- Note precautions, side effects.
- Stress doctor consultation before use.
"""
decision_guidance = """
For decisions:
- Weigh pros/cons logically.
- Consider values, goals, emotions.
- Suggest decision matrices or intuitive checks.
- Encourage trusted advice if needed.
"""
emergency_help = """
For severe distress:
- Provide immediate emotional support.
- Offer crisis helplines (region-specific).
- Encourage talking to trusted contacts or professionals.
- Assure help is available.
"""
context = [base_info, mental_health, medical_assistance, medicine_recommendation, decision_guidance, emergency_help]
def encrypt_data(data):
try:
return cipher.encrypt(data.encode('utf-8')).decode('utf-8')
except Exception as e:
logger.error(f"Encryption failed: {str(e)}")
return data
def decrypt_data(encrypted_data):
try:
return cipher.decrypt(encrypted_data.encode('utf-8')).decode('utf-8')
except Exception as e:
logger.error(f"Decryption failed: {str(e)}")
return encrypted_data
@lru_cache(maxsize=100)
def cached_transcribe(audio_file, language):
audio, sr = librosa.load(audio_file, sr=16000)
language_code = LANGUAGE_CODES.get(language, "en")
return transcribe_audio(audio, language_code)
def extract_health_features(audio, sr):
try:
audio = librosa.util.normalize(audio)
frame_duration = 30
frame_samples = int(sr * frame_duration / 1000)
frames = [audio[i:i + frame_samples] for i in range(0, len(audio), frame_samples)]
voiced_frames = [frame for frame in frames if len(frame) == frame_samples and vad.is_speech((frame * 32768).astype(np.int16).tobytes(), sr)]
if not voiced_frames:
raise ValueError("No voiced segments detected")
voiced_audio = np.concatenate(voiced_frames)
frame_step = max(1, len(voiced_audio) // (sr // 8)) # Reduced sampling for faster processing
pitches, magnitudes = librosa.piptrack(y=voiced_audio[::frame_step], sr=sr, fmin=75, fmax=300)
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
pitch = np.mean(valid_pitches) if valid_pitches else 0
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
jitter = min(jitter, 10)
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=512, hop_length=128)[0]
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
shimmer = min(shimmer, 10)
energy = np.mean(amplitudes)
mfcc = np.mean(librosa.feature.mfcc(y=voiced_audio[::4], sr=sr, n_mfcc=4), axis=1) # Reduced sampling
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=voiced_audio[::4], sr=sr, n_fft=512, hop_length=128))
logger.debug(f"Extracted features: pitch={pitch:.2f}, jitter={jitter*100:.2f}%, shimmer={shimmer*100:.2f}%, energy={energy:.4f}, mfcc_mean={np.mean(mfcc):.2f}, spectral_centroid={spectral_centroid:.2f}")
return {
"pitch": pitch,
"jitter": jitter * 100,
"shimmer": shimmer * 100,
"energy": energy,
"mfcc_mean": np.mean(mfcc),
"spectral_centroid": spectral_centroid
}
except Exception as e:
logger.error(f"Feature extraction failed: {str(e)}")
raise
def transcribe_audio(audio, language="en"):
try:
whisper_model.config.forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(
language=SUPPORTED_LANGUAGES.get({"en": "English", "hi": "Hindi", "es": "Spanish", "zh": "Mandarin"}.get(language, "English"), "english"), task="transcribe"
)
inputs = whisper_processor(audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
generated_ids = whisper_model.generate(inputs["input_features"], max_new_tokens=30) # Reduced tokens for speed
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
logger.info(f"Transcription (language: {language}): {transcription}")
return transcription
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
return None
async def get_chatbot_response(message, language="English"):
if not chat or not message:
return "Unable to generate response.", None
language_code = LANGUAGE_CODES.get(language, "en")
full_context = "\n".join(context) + f"\nUser: {message}\nMindCare: Provide response in 6-8 simple bullet points, tailored to the user's input, in a clear and empathetic tone, in {language}."
try:
response = await asyncio.get_event_loop().run_in_executor(None, lambda: chat.send_message(full_context).text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
tts = gTTS(text=response, lang=language_code, slow=False)
tts.save(temp_audio.name)
audio_path = temp_audio.name
logger.info(f"Generated response: {response[:100]}... and audio at {audio_path}")
return response, audio_path
except Exception as e:
logger.error(f"Chatbot response failed: {str(e)}")
return "Error generating response. Please check your input or API key.", None
def analyze_symptoms(text, features):
feedback = []
suggestions = []
text = text.lower() if text else ""
# Generate health assessment feedback
if "cough" in text or "coughing" in text:
feedback.append("You mentioned a cough, which may suggest a cold or respiratory issue.")
suggestions.extend([
"• Drink warm fluids like herbal tea or water to soothe your throat.",
"• Rest to help your body recover from possible infection.",
"• Use a humidifier to ease throat irritation.",
"• Consider over-the-counter cough remedies, but consult a doctor first.",
"• Monitor symptoms; see a doctor if the cough lasts over a week."
])
elif "fever" in text or "temperature" in text:
feedback.append("You mentioned a fever, which could indicate an infection.")
suggestions.extend([
"• Stay hydrated with water or electrolyte drinks.",
"• Rest to support your immune system.",
"• Monitor your temperature regularly.",
"• Use paracetamol to reduce fever, but follow dosage instructions.",
"• Seek medical advice if fever exceeds 100.4°F (38°C) for over 2 days."
])
elif "headache" in text:
feedback.append("You mentioned a headache, possibly due to stress or dehydration.")
suggestions.extend([
"• Drink plenty of water to stay hydrated.",
"• Take short breaks to relax your mind.",
"• Try a mild pain reliever like ibuprofen, but consult a doctor.",
"• Practice deep breathing to reduce tension.",
"• Ensure you're getting enough sleep (7-8 hours)."
])
elif "stress" in text or "anxious" in text or "mental stress" in text:
feedback.append("You mentioned stress or anxiety, which can affect well-being.")
suggestions.extend([
"• Try 5 minutes of deep breathing to calm your mind.",
"• Write in a journal to process your thoughts.",
"• Take a short walk in nature to relax.",
"• Practice mindfulness or meditation daily.",
"• Talk to a trusted friend or professional for support.",
"• Prioritize sleep and avoid excessive caffeine."
])
elif "respiratory" in text or "breathing" in text or "shortness of breath" in text:
feedback.append("You mentioned breathing issues, which may indicate asthma or infection.")
suggestions.extend([
"• Avoid triggers like smoke or allergens.",
"• Practice slow, deep breathing exercises.",
"• Stay in a well-ventilated area.",
"• Monitor symptoms and seek medical help if severe.",
"• Rest to reduce strain on your respiratory system."
])
elif "cold" in text:
feedback.append("You mentioned a cold, likely a viral infection.")
suggestions.extend([
"• Drink warm fluids like soup or tea.",
"• Rest to help your body fight the virus.",
"• Use saline nasal spray to relieve congestion.",
"• Take over-the-counter cold remedies, but consult a doctor.",
"• Stay hydrated and avoid strenuous activity."
])
# Voice feature-based feedback and suggestions
if features["jitter"] > 6.5:
feedback.append(f"High jitter ({features['jitter']:.2f}%) suggests vocal strain or respiratory issues.")
suggestions.append("• Rest your voice and avoid shouting.")
elif features["jitter"] > 4.0:
feedback.append(f"Moderate jitter ({features['jitter']:.2f}%) indicates possible vocal instability.")
suggestions.append("• Sip warm water to soothe your vocal cords.")
if features["shimmer"] > 7.5:
feedback.append(f"High shimmer ({features['shimmer']:.2f}%) may indicate emotional stress.")
suggestions.append("• Try relaxation techniques like yoga or meditation.")
elif features["shimmer"] > 5.0:
feedback.append(f"Moderate shimmer ({features['shimmer']:.2f}%) suggests mild vocal strain.")
suggestions.append("• Stay hydrated to support vocal health.")
if features["energy"] < 0.003:
feedback.append(f"Low vocal energy ({features['energy']:.4f}) may indicate fatigue.")
suggestions.append("• Ensure 7-8 hours of sleep nightly.")
elif features["energy"] < 0.007:
feedback.append(f"Low vocal energy ({features['energy']:.4f}) suggests possible tiredness.")
suggestions.append("• Take short naps to boost energy.")
if features["pitch"] < 70 or features["pitch"] > 290:
feedback.append(f"Unusual pitch ({features['pitch']:.2f} Hz) may indicate vocal issues.")
suggestions.append("• Consult a doctor for a vocal health check.")
elif 70 <= features["pitch"] <= 90 or 270 <= features["pitch"] <= 290:
feedback.append(f"Pitch ({features['pitch']:.2f} Hz) is slightly outside typical range.")
suggestions.append("• Avoid straining your voice during conversations.")
if features["spectral_centroid"] > 2700:
feedback.append(f"High spectral centroid ({features['spectral_centroid']:.2f} Hz) suggests tense speech.")
suggestions.append("• Practice slow, calm speaking to reduce tension.")
elif features["spectral_centroid"] > 2200:
feedback.append(f"Elevated spectral centroid ({features['spectral_centroid']:.2f} Hz) may indicate mild tension.")
suggestions.append("• Relax your jaw and shoulders while speaking.")
if not feedback:
feedback.append("No significant health concerns detected from voice or text analysis.")
suggestions.extend([
"• Maintain a balanced diet with fruits and vegetables.",
"• Exercise regularly for overall health.",
"• Stay hydrated with 8 glasses of water daily.",
"• Get 7-8 hours of sleep each night.",
"• Practice stress-relief techniques like meditation.",
"• Schedule regular health check-ups."
])
# Ensure suggestions are limited to 6-8 unique items
suggestions = list(dict.fromkeys(suggestions))[:8]
if len(suggestions) < 6:
suggestions.extend([
"• Stay active with light exercise like walking.",
"• Practice gratitude to boost mental well-being."
][:6 - len(suggestions)])
logger.debug(f"Generated feedback: {feedback}, Suggestions: {suggestions}")
return "\n".join(feedback), "\n".join(suggestions)
def store_user_consent(email, language):
if not sf:
logger.warning("Salesforce not connected; skipping consent storage")
return None
try:
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
sanitized_email = email_to_use.replace("'", "\\'").replace('"', '\\"')
query = f"SELECT Id FROM HealthUser__c WHERE Email__c = '{sanitized_email}'"
logger.debug(f"Executing SOQL query: {query}")
user = sf.query(query)
user_id = None
if user["totalSize"] == 0:
logger.info(f"No user found for email: {sanitized_email}, creating new user")
user = sf.HealthUser__c.create({
"Email__c": sanitized_email,
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
"ConsentGiven__c": True
})
user_id = user["id"]
logger.info(f"Created new user with email: {sanitized_email}, ID: {user_id}")
else:
user_id = user["records"][0]["Id"]
logger.info(f"Found existing user with email: {sanitized_email}, ID: {user_id}")
sf.HealthUser__c.update(user_id, {
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
"ConsentGiven__c": True
})
logger.info(f"Updated user with email: {sanitized_email}")
sf.ConsentLog__c.create({
"HealthUser__c": user_id,
"ConsentType__c": "Voice Analysis",
"ConsentDate__c": datetime.utcnow().isoformat()
})
logger.info(f"Stored consent log for user ID: {user_id}")
return user_id
except Exception as e:
logger.error(f"Consent storage failed: {str(e)}")
logger.exception("Stack trace for consent storage failure:")
return None
def generate_pdf_report(feedback, transcription, features, language, email, suggestions):
try:
feedback = feedback.replace('<', '<').replace('>', '>').replace('&', '&')
transcription = transcription.replace('<', '<').replace('>', '>').replace('&', '&') if transcription else "None"
suggestions = suggestions.replace('<', '<').replace('>', '>').replace('&', '&') if suggestions else "None"
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
email = email_to_use.replace('<', '<').replace('>', '>').replace('&', '&')
language_display = SALESFORCE_LANGUAGE_MAP.get(language, "English")
ist = pytz.timezone('Asia/Kolkata')
ist_time = datetime.now(ist).strftime("%I:%M %p IST on %B %d, %Y")
logger.debug(f"Generating PDF with IST time: {ist_time}, feedback: {feedback[:100]}..., transcription: {transcription[:100]}..., suggestions: {suggestions[:100]}..., language: {language_display}, email: {email}")
debug_dir = "/tmp/mindcare_logs"
os.makedirs(debug_dir, exist_ok=True)
timestamp = datetime.now(ist).strftime("%Y%m%d_%H%M%S")
pdf_path = os.path.join(debug_dir, f"report_{timestamp}.pdf")
doc = SimpleDocTemplate(pdf_path, pagesize=A4, rightMargin=inch, leftMargin=inch, topMargin=inch, bottomMargin=inch)
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1,
spaceAfter=12,
fontName='Times-Bold'
)
heading_style = ParagraphStyle(
name='Heading1',
fontSize=14,
leading=16,
spaceBefore=12,
spaceAfter=8,
fontName='Times-Bold'
)
subheading_style = ParagraphStyle(
name='Heading2',
fontSize=12,
leading=14,
spaceBefore=10,
spaceAfter=6,
fontName='Times-Bold'
)
normal_style = ParagraphStyle(
name='Normal',
fontSize=12,
leading=14,
spaceAfter=6,
fontName='Times-Roman'
)
bullet_style = ParagraphStyle(
name='Bullet',
fontSize=12,
leading=14,
leftIndent=20,
firstLineIndent=-10,
spaceAfter=4,
fontName='Times-Roman'
)
story = []
story.append(Paragraph("MindCare Health Assistant Report", title_style))
story.append(Paragraph(f"Generated on {ist_time}", normal_style))
story.append(Spacer(1, 0.5 * inch))
story.append(Paragraph("User Information", heading_style))
user_info = [
ListItem(Paragraph(f"<b>Email</b>: {email}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Language</b>: {language_display}", bullet_style), bulletText="•")
]
story.append(ListFlowable(user_info, bulletType='bullet'))
story.append(Spacer(1, 0.25 * inch))
story.append(Paragraph("Voice Analysis Results", heading_style))
story.append(Paragraph("Health Assessment", subheading_style))
for line in feedback.split('\n'):
if line.strip():
story.append(Paragraph(line, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Health Suggestions", subheading_style))
for line in suggestions.split('\n'):
if line.strip():
story.append(Paragraph(line, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Voice Analysis Details", subheading_style))
details = [
ListItem(Paragraph(f"Pitch: {features['pitch']:.2f} Hz", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Jitter: {features['jitter']:.2f}% (voice stability)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Shimmer: {features['shimmer']:.2f}% (amplitude variation)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Energy: {features['energy']:.4f} (vocal intensity)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"MFCC Mean: {features['mfcc_mean']:.2f} (timbre quality)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Spectral Centroid: {features['spectral_centroid']:.2f} Hz (voice brightness)", bullet_style), bulletText="•"),
ListItem(Paragraph(f"Transcription: {transcription}", bullet_style), bulletText="•")
]
story.append(ListFlowable(details, bulletType='bullet'))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Transcription", subheading_style))
story.append(Paragraph(transcription, normal_style))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Voice Metrics", subheading_style))
metrics = [
ListItem(Paragraph(f"<b>Pitch</b>: {features['pitch']:.2f} Hz", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Jitter</b>: {features['jitter']:.2f}%", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Shimmer</b>: {features['shimmer']:.2f}%", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Energy</b>: {features['energy']:.4f}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>MFCC Mean</b>: {features['mfcc_mean']:.2f}", bullet_style), bulletText="•"),
ListItem(Paragraph(f"<b>Spectral Centroid</b>: {features['spectral_centroid']:.2f} Hz", bullet_style), bulletText="•")
]
story.append(ListFlowable(metrics, bulletType='bullet'))
story.append(Spacer(1, 0.1 * inch))
story.append(Paragraph("Disclaimer", heading_style))
story.append(Paragraph("This report is a preliminary analysis and not a medical diagnosis. Always consult a healthcare provider.", normal_style))
doc.build(story)
logger.info(f"Generated PDF report: {pdf_path}")
try:
with open(pdf_path, 'rb') as f:
pdf_content = f.read()
if len(pdf_content) > 0 and pdf_content.startswith(b'%PDF'):
return pdf_path, None
else:
logger.error(f"PDF file {pdf_path} is corrupt or empty")
return None, f"PDF generation failed: Generated PDF is corrupt or empty."
except Exception as e:
logger.error(f"Failed to verify PDF {pdf_path}: {str(e)}")
return None, f"PDF generation failed: Unable to verify PDF. Error: {str(e)}."
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}")
logger.exception("Stack trace for PDF generation failure:")
return None, f"PDF generation failed: {str(e)}."
def store_in_salesforce(user_id, audio_file, feedback, respiratory_score, mental_health_score, features, transcription, language):
if not sf:
logger.warning("Salesforce not connected; skipping storage")
return
try:
with open(audio_file, "rb") as f:
audio_content = base64.b64encode(f.read()).decode()
content_version = sf.ContentVersion.create({
"Title": f"Voice_Assessment_{datetime.utcnow().isoformat()}",
"PathOnClient": os.path.basename(audio_file),
"VersionData": audio_content,
"IsMajorVersion": True
})
content_document_id = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version['id']}'")["records"][0]["ContentDocumentId"]
file_url = f"{SF_INSTANCE_URL}/lightning/r/ContentDocument/{content_document_id}/view"
feedback_str = feedback[:32767]
assessment = sf.VoiceAssessment__c.create({
"HealthUser__c": user_id,
"VoiceRecording__c": file_url,
"AssessmentResult__c": feedback_str,
"AssessmentDate__c": datetime.utcnow().isoformat(),
"ConfidenceScore__c": 95.0,
"RespiratoryScore__c": float(respiratory_score),
"MentalHealthScore__c": float(mental_health_score),
"Pitch__c": float(features["pitch"]),
"Jitter__c": float(features["jitter"]),
"Shimmer__c": float(features["shimmer"]),
"Energy__c": float(features["energy"]),
"Transcription__c": transcription or "None",
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English")
})
sf.ContentDocumentLink.create({
"ContentDocumentId": content_document_id,
"LinkedEntityId": assessment["id"],
"ShareType": "V"
})
logger.info(f"Stored assessment in Salesforce: {assessment['id']}")
except Exception as e:
logger.error(f"Salesforce storage failed: {str(e)}")
logger.exception("Stack trace for Salesforce storage failure:")
raise
async def analyze_voice(audio_file=None, language="English", email=None):
global usage_metrics
usage_metrics["total_assessments"] += 1
usage_metrics["assessments_by_language"][language] = usage_metrics["assessments_by_language"].get(language, 0) + 1
try:
if not audio_file or not os.path.exists(audio_file):
raise ValueError("No valid audio file provided")
audio, sr = librosa.load(audio_file, sr=16000)
max_duration = 5 # Reduced from 10 to 5 seconds for faster processing
if len(audio) > max_duration * sr:
audio = audio[:max_duration * sr]
logger.info(f"Truncated audio to first {max_duration} seconds for faster processing")
if len(audio) < sr:
raise ValueError("Audio too short (minimum 1 second)")
language_code = LANGUAGE_CODES.get(language, "en")
user_id = store_user_consent(email, language)
if not user_id:
logger.warning("Proceeding with analysis despite consent storage failure")
feedback_message = "Warning: User consent could not be stored in Salesforce, but analysis will proceed.\n"
else:
feedback_message = ""
features = extract_health_features(audio, sr)
transcription = cached_transcribe(audio_file, language)
feedback, suggestions = analyze_symptoms(transcription, features)
respiratory_score = features["jitter"]
mental_health_score = features["shimmer"]
feedback = feedback_message + feedback + "\n\n**Voice Analysis Details**:\n"
feedback += f"- Pitch: {features['pitch']:.2f} Hz\n"
feedback += f"- Jitter: {features['jitter']:.2f}% (voice stability)\n"
feedback += f"- Shimmer: {features['shimmer']:.2f}% (amplitude variation)\n"
feedback += f"- Energy: {features['energy']:.4f} (vocal intensity)\n"
feedback += f"- MFCC Mean: {features['mfcc_mean']:.2f} (timbre quality)\n"
feedback += f"- Spectral Centroid: {features['spectral_centroid']:.2f} Hz (voice brightness)\n"
feedback += f"- Transcription: {transcription if transcription else 'None'}\n"
feedback += f"- Email: {email if email and email.strip() else DEFAULT_EMAIL}\n"
feedback += "\n**Disclaimer**: This is a preliminary analysis. Consult a healthcare provider for professional evaluation."
if user_id and sf:
store_in_salesforce(user_id, audio_file, feedback, respiratory_score, mental_health_score, features, transcription, language)
else:
logger.warning("Skipping Salesforce storage due to missing user_id or Salesforce connection")
file_path, pdf_error = generate_pdf_report(feedback, transcription, features, language, email, suggestions)
if pdf_error:
feedback += f"\n\n**Error**: {pdf_error}"
return feedback, file_path, suggestions, None
# Generate audio response based on suggestions
response_text = suggestions
response, audio_path = await get_chatbot_response(response_text, language)
if audio_path:
logger.info(f"Generated audio response at {audio_path}")
else:
logger.warning("Failed to generate audio response")
return feedback, file_path, response, None
try:
os.remove(audio_file)
logger.info(f"Deleted audio file: {audio_file}")
except Exception as e:
logger.error(f"Failed to delete audio file: {str(e)}")
return feedback, file_path, response, audio_path
except Exception as e:
logger.error(f"Audio processing failed: {str(e)}")
return f"Error: {str(e)}", None, "Error: Could not generate suggestions due to audio processing failure.", None
def launch():
custom_css = """
.gradio-container {
max-width: 1200px;
margin: auto;
font-family: 'Roboto', sans-serif;
background-color: var(--background-primary);
color: var(--text-primary);
}
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
h1, h3 {
background: linear-gradient(to right, #007bff, #0056b3);
color: white;
padding: 15px;
border-radius: 8px;
text-align: center;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-column {
background: var(--background-secondary);
border-radius: 8px;
padding: 20px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
margin: 10px;
color: var(--text-primary);
}
.gr-button {
background: #007bff;
color: white;
border: none;
border-radius: 6px;
padding: 10px 20px;
font-weight: bold;
transition: background 0.3s;
}
.gr-button:hover {
background: #0056b3;
}
.gr-textbox, .gr-dropdown, .gr-checkbox, .gr-file, .gr-audio {
border-radius: 6px;
border: 1px solid var(--border-color);
background: var(--background-secondary);
color: var(--text-primary);
}
.gr-textbox textarea {
font-size: 14px;
color: var(--text-primary);
}
#health-results {
background: var(--success-background);
border: 1px solid var(--success-border);
border-radius: 6px;
color: var(--text-primary);
}
.no-microphone-warning {
color: var(--error-text);
font-weight: bold;
}
"""
def check_microphone_access():
try:
from navigator import mediaDevices
devices = mediaDevices.enumerateDevices()
for device in devices:
if device.kind == "audioinput":
return None
return "Microphone access is not available. Please upload an audio file or check browser permissions."
except Exception as e:
logger.error(f"Microphone access check failed: {str(e)}")
return "Microphone access is not available. Please upload an audio file or check browser permissions."
with gr.Blocks(title="MindCare Health Assistant", css=custom_css) as demo:
gr.Markdown("Record your voice or type a message for health assessments and suggestions.")
with gr.Row():
with gr.Column():
gr.Markdown("### Voice Analysis")
mic_warning = gr.Markdown()
mic_warning.value = check_microphone_access() or ""
gr.Markdown("Upload voice (1+ sec) describing symptoms (e.g., 'I have a cough' or 'I feel stressed'). Note: Microphone recording may not be supported in all contexts; use file upload instead.")
email_input = gr.Textbox(label="Enter Your Email", placeholder="e.g., user@example.com", value="")
language_input = gr.Dropdown(choices=list(SUPPORTED_LANGUAGES.keys()), label="Select Language", value="English")
consent_input = gr.Checkbox(label="I consent to data storage and voice analysis", value=True, interactive=False)
audio_input = gr.Audio(type="filepath", label="Upload Voice (WAV, MP3, FLAC)", format="wav", interactive=True)
voice_output = gr.Textbox(label="Health Assessment Results", elem_id="health-results")
file_output = gr.File(label="Download Assessment Report (PDF)", file_types=[".pdf"])
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column():
gr.Markdown("### Health Suggestions")
gr.Markdown("Enter a message for personalized health advice or get suggestions based on voice analysis.")
text_input = gr.Textbox(label="Enter your message (optional)")
text_output = gr.Textbox(label="Response")
audio_output = gr.Audio(label="Response Audio")
suggest_submit_btn = gr.Button("Submit")
suggest_clear_btn = gr.Button("Clear")
submit_btn.click(
fn=analyze_voice,
inputs=[audio_input, language_input, email_input],
outputs=[voice_output, file_output, text_output, audio_output]
)
clear_btn.click(
fn=lambda: (gr.update(value=None), gr.update(value="English"), gr.update(value=""), gr.update(value=""), gr.update(value=None), gr.update(value=""), gr.update(value=None)),
inputs=None,
outputs=[audio_input, language_input, email_input, voice_output, file_output, text_output, audio_output]
)
suggest_submit_btn.click(
fn=get_chatbot_response,
inputs=[text_input, language_input],
outputs=[text_output, audio_output]
)
suggest_clear_btn.click(
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=None)),
inputs=None,
outputs=[text_input, text_output, audio_output]
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
launch() |