Update app.py
Browse files
app.py
CHANGED
@@ -30,6 +30,8 @@ import trimesh
|
|
30 |
import argparse
|
31 |
import numpy as np
|
32 |
import gradio as gr
|
|
|
|
|
33 |
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
|
34 |
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
|
35 |
Step1X3DTexturePipeline,
|
@@ -55,9 +57,46 @@ geometry_model = Step1X3DGeometryPipeline.from_pretrained(
|
|
55 |
|
56 |
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
@spaces.GPU(duration=240)
|
60 |
-
def
|
61 |
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
|
62 |
):
|
63 |
# geometry_model = geometry_model.to("cuda")
|
@@ -96,14 +135,46 @@ def generate_func(
|
|
96 |
return geometry_save_path, textured_save_path
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Blocks(title="Step1X-3D demo") as demo:
|
100 |
-
gr.Markdown("# Step1X-3D")
|
|
|
101 |
with gr.Row():
|
102 |
with gr.Column(scale=2):
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
inference_steps = gr.Slider(
|
106 |
-
label="
|
107 |
)
|
108 |
max_facenum = gr.Number(label="Max Face Num", value="400000")
|
109 |
symmetry = gr.Radio(
|
@@ -118,10 +189,12 @@ with gr.Blocks(title="Step1X-3D demo") as demo:
|
|
118 |
value="sharp",
|
119 |
type="value",
|
120 |
)
|
121 |
-
|
|
|
122 |
with gr.Column(scale=4):
|
123 |
textured_preview = gr.Model3D(label="Textured", height=380)
|
124 |
geometry_preview = gr.Model3D(label="Geometry", height=380)
|
|
|
125 |
with gr.Column(scale=1):
|
126 |
gr.Examples(
|
127 |
examples=[
|
@@ -134,14 +207,58 @@ with gr.Blocks(title="Step1X-3D demo") as demo:
|
|
134 |
["examples/images/061.png"],
|
135 |
["examples/images/107.png"],
|
136 |
],
|
137 |
-
inputs=[
|
138 |
cache_examples=False,
|
|
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
inputs=[
|
144 |
-
|
145 |
guidance_scale,
|
146 |
inference_steps,
|
147 |
max_facenum,
|
@@ -151,4 +268,4 @@ with gr.Blocks(title="Step1X-3D demo") as demo:
|
|
151 |
outputs=[geometry_preview, textured_preview],
|
152 |
)
|
153 |
|
154 |
-
demo.launch(ssr_mode=False)
|
|
|
30 |
import argparse
|
31 |
import numpy as np
|
32 |
import gradio as gr
|
33 |
+
from gradio_client import Client
|
34 |
+
from PIL import Image
|
35 |
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
|
36 |
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
|
37 |
Step1X3DTexturePipeline,
|
|
|
57 |
|
58 |
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
|
59 |
|
60 |
+
# Initialize text-to-image client
|
61 |
+
t2i_client = Client("http://211.233.58.201:7971/")
|
62 |
+
|
63 |
+
|
64 |
+
def generate_image_from_text(prompt, height, width, steps, scales, seed):
|
65 |
+
"""Generate image from text using the external API"""
|
66 |
+
try:
|
67 |
+
result = t2i_client.predict(
|
68 |
+
height=height,
|
69 |
+
width=width,
|
70 |
+
steps=steps,
|
71 |
+
scales=scales,
|
72 |
+
prompt=prompt,
|
73 |
+
seed=seed if seed != -1 else None,
|
74 |
+
api_name="/process_and_save_image"
|
75 |
+
)
|
76 |
+
# Result contains a dict with 'path' key pointing to the generated image
|
77 |
+
if isinstance(result, dict) and 'path' in result:
|
78 |
+
return result['path']
|
79 |
+
elif isinstance(result, str):
|
80 |
+
return result
|
81 |
+
else:
|
82 |
+
raise Exception("Unexpected result format from text-to-image API")
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error generating image from text: {e}")
|
85 |
+
return None
|
86 |
+
|
87 |
+
|
88 |
+
def get_random_seed():
|
89 |
+
"""Get a random seed from the external API"""
|
90 |
+
try:
|
91 |
+
result = t2i_client.predict(api_name="/update_random_seed")
|
92 |
+
return result
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error getting random seed: {e}")
|
95 |
+
return -1
|
96 |
+
|
97 |
|
98 |
@spaces.GPU(duration=240)
|
99 |
+
def generate_3d_func(
|
100 |
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
|
101 |
):
|
102 |
# geometry_model = geometry_model.to("cuda")
|
|
|
135 |
return geometry_save_path, textured_save_path
|
136 |
|
137 |
|
138 |
+
def update_image_display(uploaded_image, generated_image):
|
139 |
+
"""Update the displayed image based on which source has content"""
|
140 |
+
if generated_image is not None:
|
141 |
+
return generated_image
|
142 |
+
elif uploaded_image is not None:
|
143 |
+
return uploaded_image
|
144 |
+
else:
|
145 |
+
return None
|
146 |
+
|
147 |
+
|
148 |
with gr.Blocks(title="Step1X-3D demo") as demo:
|
149 |
+
gr.Markdown("# Step1X-3D with Text-to-Image Generation")
|
150 |
+
|
151 |
with gr.Row():
|
152 |
with gr.Column(scale=2):
|
153 |
+
gr.Markdown("## Image Input")
|
154 |
+
with gr.Tab("Upload Image"):
|
155 |
+
uploaded_image = gr.Image(label="Upload Image", type="filepath")
|
156 |
+
|
157 |
+
with gr.Tab("Generate from Text"):
|
158 |
+
text_prompt = gr.Textbox(label="Image Description", placeholder="Enter your image description here...")
|
159 |
+
with gr.Row():
|
160 |
+
t2i_height = gr.Slider(label="Height", minimum=512, maximum=2048, value=1024, step=64)
|
161 |
+
t2i_width = gr.Slider(label="Width", minimum=512, maximum=2048, value=1024, step=64)
|
162 |
+
with gr.Row():
|
163 |
+
t2i_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, value=8, step=1)
|
164 |
+
t2i_scales = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.5)
|
165 |
+
with gr.Row():
|
166 |
+
t2i_seed = gr.Number(label="Seed (optional, -1 for random)", value=-1)
|
167 |
+
random_seed_btn = gr.Button("Get Random Seed", scale=0)
|
168 |
+
generate_image_btn = gr.Button("Generate Image", variant="primary")
|
169 |
+
|
170 |
+
# Display the current working image
|
171 |
+
current_image = gr.Image(label="Current Image (for 3D generation)", type="filepath", interactive=False)
|
172 |
+
generated_image_path = gr.State(value=None)
|
173 |
+
|
174 |
+
gr.Markdown("## 3D Generation Settings")
|
175 |
+
guidance_scale = gr.Number(label="3D Guidance Scale", value="7.5")
|
176 |
inference_steps = gr.Slider(
|
177 |
+
label="3D Inference Steps", minimum=1, maximum=100, value=50
|
178 |
)
|
179 |
max_facenum = gr.Number(label="Max Face Num", value="400000")
|
180 |
symmetry = gr.Radio(
|
|
|
189 |
value="sharp",
|
190 |
type="value",
|
191 |
)
|
192 |
+
btn_3d = gr.Button("Generate 3D", variant="primary")
|
193 |
+
|
194 |
with gr.Column(scale=4):
|
195 |
textured_preview = gr.Model3D(label="Textured", height=380)
|
196 |
geometry_preview = gr.Model3D(label="Geometry", height=380)
|
197 |
+
|
198 |
with gr.Column(scale=1):
|
199 |
gr.Examples(
|
200 |
examples=[
|
|
|
207 |
["examples/images/061.png"],
|
208 |
["examples/images/107.png"],
|
209 |
],
|
210 |
+
inputs=[uploaded_image],
|
211 |
cache_examples=False,
|
212 |
+
label="Example Images"
|
213 |
)
|
214 |
|
215 |
+
# Event handlers
|
216 |
+
def on_generate_image(prompt, height, width, steps, scales, seed):
|
217 |
+
if not prompt:
|
218 |
+
gr.Warning("Please enter a text prompt")
|
219 |
+
return None, None
|
220 |
+
|
221 |
+
generated_path = generate_image_from_text(prompt, height, width, steps, scales, seed)
|
222 |
+
if generated_path:
|
223 |
+
return generated_path, generated_path
|
224 |
+
else:
|
225 |
+
gr.Warning("Failed to generate image from text")
|
226 |
+
return None, None
|
227 |
+
|
228 |
+
def on_upload_image(image_path):
|
229 |
+
return image_path
|
230 |
+
|
231 |
+
def get_current_image(uploaded, generated):
|
232 |
+
if generated is not None:
|
233 |
+
return generated
|
234 |
+
elif uploaded is not None:
|
235 |
+
return uploaded
|
236 |
+
else:
|
237 |
+
return None
|
238 |
+
|
239 |
+
# Connect event handlers
|
240 |
+
generate_image_btn.click(
|
241 |
+
on_generate_image,
|
242 |
+
inputs=[text_prompt, t2i_height, t2i_width, t2i_steps, t2i_scales, t2i_seed],
|
243 |
+
outputs=[generated_image_path, current_image]
|
244 |
+
)
|
245 |
+
|
246 |
+
random_seed_btn.click(
|
247 |
+
get_random_seed,
|
248 |
+
inputs=[],
|
249 |
+
outputs=[t2i_seed]
|
250 |
+
)
|
251 |
+
|
252 |
+
uploaded_image.change(
|
253 |
+
on_upload_image,
|
254 |
+
inputs=[uploaded_image],
|
255 |
+
outputs=[current_image]
|
256 |
+
)
|
257 |
+
|
258 |
+
btn_3d.click(
|
259 |
+
lambda img, gs, is_, mf, sym, et: generate_3d_func(img, gs, is_, mf, sym, et) if img else (None, None),
|
260 |
inputs=[
|
261 |
+
current_image,
|
262 |
guidance_scale,
|
263 |
inference_steps,
|
264 |
max_facenum,
|
|
|
268 |
outputs=[geometry_preview, textured_preview],
|
269 |
)
|
270 |
|
271 |
+
demo.launch(ssr_mode=False)
|