Spaces:
Running
on
Zero
Running
on
Zero
File size: 41,011 Bytes
07f1f64 ab87e84 07f1f64 91a3092 07f1f64 708d515 07f1f64 ab87e84 07f1f64 b4da283 07f1f64 fd70398 07f1f64 4cbb9c7 ab87e84 4cbb9c7 b4da283 4cbb9c7 b4da283 ab87e84 4cbb9c7 b4da283 07f1f64 b4da283 07f1f64 b4da283 ab87e84 07f1f64 b4da283 07f1f64 b4da283 07f1f64 708d515 ab87e84 07f1f64 b4da283 07f1f64 ab87e84 b4da283 fd70398 b4da283 355d056 ab87e84 07f1f64 708d515 07f1f64 ab87e84 07f1f64 d7acdf0 07f1f64 b4da283 ab87e84 b4da283 fd70398 b4da283 fd70398 b4da283 355d056 b4da283 708d515 07f1f64 ab87e84 708d515 07f1f64 708d515 07f1f64 d7acdf0 07f1f64 d7acdf0 07f1f64 d7acdf0 07f1f64 d7acdf0 07f1f64 b4da283 07f1f64 c0add26 07f1f64 c0add26 b4da283 07f1f64 ab87e84 07f1f64 b4da283 07f1f64 b4da283 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 98cbcb6 ab87e84 07f1f64 ab87e84 28c22fa ab87e84 07f1f64 b4da283 493db6d ab87e84 07f1f64 98cbcb6 ab87e84 1a7856c fc7ceca 4cbb9c7 28c22fa 493db6d ab87e84 fc7ceca 07f1f64 ab87e84 b4da283 ab87e84 b4da283 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 b4da283 ab87e84 b4da283 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 493db6d ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 d7acdf0 07f1f64 4cbb9c7 b4da283 355d056 ab87e84 07f1f64 ab87e84 4cbb9c7 ab87e84 355d056 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 4cbb9c7 b4da283 4cbb9c7 493db6d 355d056 ab87e84 4cbb9c7 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 b4da283 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 07f1f64 ab87e84 91a3092 07f1f64 ab87e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 |
"""
Gradio UI for Text-to-Speech using HiggsAudioServeEngine
Enhanced with visual improvements and better user experience
"""
import argparse
import base64
import os
import uuid
import json
from typing import Optional
import gradio as gr
from loguru import logger
import numpy as np
import time
from functools import lru_cache
import re
import spaces
import torch
# Import HiggsAudio components
from higgs_audio.serve.serve_engine import HiggsAudioServeEngine
from higgs_audio.data_types import ChatMLSample, AudioContent, Message
# Global engine instance
engine = None
VOICE_PRESETS = {}
# Default model configuration
DEFAULT_MODEL_PATH = "bosonai/higgs-audio-v2-generation-3B-base"
DEFAULT_AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer"
SAMPLE_RATE = 24000
DEFAULT_SYSTEM_PROMPT = (
"Generate audio following instruction.\n\n"
"<|scene_desc_start|>\n"
"Audio is recorded from a quiet room.\n"
"Support for multiple languages including English, Chinese, Korean, Japanese, and more.\n"
"<|scene_desc_end|>"
)
DEFAULT_STOP_STRINGS = ["<|end_of_text|>", "<|eot_id|>"]
# Predefined examples for system and input messages
PREDEFINED_EXAMPLES = {
"voice-clone": {
"system_prompt": "",
"input_text": "Hey there! I'm your friendly voice twin in the making. Pick a voice preset below or upload your own audio - let's clone some vocals and bring your voice to life! ",
"description": "🎭 <b>Voice Clone</b> - Clone any voice with reference audio. Leave the system prompt empty for best results.",
"icon": "🎭",
"color": "#FF6B6B"
},
"smart-voice": {
"system_prompt": DEFAULT_SYSTEM_PROMPT,
"input_text": "The sun rises in the east and sets in the west. This simple fact has been observed by humans for thousands of years.",
"description": "🧠 <b>Smart Voice</b> - Generate natural speech based on context",
"icon": "🧠",
"color": "#4ECDC4"
},
"multispeaker-voice-description": {
"system_prompt": "You are an AI assistant designed to convert text into speech.\n"
"If the user's message includes a [SPEAKER*] tag, do not read out the tag and generate speech for the following text, using the specified voice.\n"
"If no speaker tag is present, select a suitable voice on your own.\n\n"
"<|scene_desc_start|>\n"
"SPEAKER0: feminine\n"
"SPEAKER1: masculine\n"
"<|scene_desc_end|>",
"input_text": "[SPEAKER0] I can't believe you did that without even asking me first!\n"
"[SPEAKER1] Oh, come on! It wasn't a big deal, and I knew you would overreact like this.\n"
"[SPEAKER0] Overreact? You made a decision that affects both of us without even considering my opinion!\n"
"[SPEAKER1] Because I didn't have time to sit around waiting for you to make up your mind! Someone had to act.",
"description": "👥 <b>Multi-Speaker</b> - Different voices for dialogue and conversations",
"icon": "👥",
"color": "#95E1D3"
},
"single-speaker-voice-description": {
"system_prompt": "Generate audio following instruction.\n\n"
"<|scene_desc_start|>\n"
"SPEAKER0: He speaks with a clear British accent and a conversational, inquisitive tone. His delivery is articulate and at a moderate pace, and very clear audio.\n"
"<|scene_desc_end|>",
"input_text": "Hey, everyone! Welcome back to Tech Talk Tuesdays.\n"
"It's your host, Alex, and today, we're diving into a topic that's become absolutely crucial in the tech world — deep learning.\n"
"And let's be honest, if you've been even remotely connected to tech, AI, or machine learning lately, you know that deep learning is everywhere.\n"
"\n"
"So here's the big question: Do you want to understand how deep learning works?\n",
"description": "🎙️ <b>Voice Description</b> - Generate speech with specific voice characteristics",
"icon": "🎙️",
"color": "#F38181"
},
"single-speaker-zh": {
"system_prompt": "Generate audio following instruction.\n\n"
"<|scene_desc_start|>\n"
"Audio is recorded from a quiet room.\n"
"<|scene_desc_end|>",
"input_text": "大家好, 欢迎收听本期的跟李沐学AI. 今天沐哥在忙着洗数据, 所以由我, 希格斯主播代替他讲这期视频.\n"
"今天我们要聊的是一个你绝对不能忽视的话题: 多模态学习.\n"
"那么, 问题来了, 你真的了解多模态吗? 你知道如何自己动手构建多模态大模型吗.\n"
"或者说, 你能察觉到我其实是个机器人吗?",
"description": "🇨🇳 <b>Chinese Speech</b> - Generate natural Chinese speech",
"icon": "🇨🇳",
"color": "#AA96DA"
},
"single-speaker-kr": {
"system_prompt": "Generate audio following instruction.\n\n"
"<|scene_desc_start|>\n"
"Audio is recorded from a quiet room.\n"
"<|scene_desc_end|>",
"input_text": "안녕하세요, 오늘은 인공지능의 미래에 대해 이야기해보겠습니다.\n"
"최근 AI 기술의 발전이 정말 놀라운데요,\n"
"특히 음성 합성 기술은 이제 사람과 구별하기 어려울 정도로 자연스러워졌습니다.\n"
"여러분은 제가 실제 사람인지 AI인지 구별할 수 있으신가요?",
"description": "🇰🇷 <b>Korean Speech</b> - Generate natural Korean speech",
"icon": "🇰🇷",
"color": "#FFB6C1"
},
"single-speaker-bgm": {
"system_prompt": DEFAULT_SYSTEM_PROMPT,
"input_text": "[music start] I will remember this, thought Ender, when I am defeated. To keep dignity, and give honor where it's due, so that defeat is not disgrace. And I hope I don't have to do it often. [music end]",
"description": "🎵 <b>Speech with BGM</b> - Add background music to your speech (experimental)",
"icon": "🎵",
"color": "#FCBAD3"
},
}
@lru_cache(maxsize=20)
def encode_audio_file(file_path):
"""Encode an audio file to base64."""
with open(file_path, "rb") as audio_file:
return base64.b64encode(audio_file.read()).decode("utf-8")
def get_current_device():
"""Get the current device."""
return "cuda" if torch.cuda.is_available() else "cpu"
def load_voice_presets():
"""Load the voice presets from the voice_examples directory."""
try:
config_path = os.path.join(os.path.dirname(__file__), "voice_examples", "config.json")
# Check if directory exists
if not os.path.exists(os.path.dirname(config_path)):
logger.warning("Voice examples directory not found")
return {"EMPTY": "No reference voice"}
with open(config_path, "r") as f:
voice_dict = json.load(f)
voice_presets = {k: v["transcript"] for k, v in voice_dict.items()}
voice_presets["EMPTY"] = "No reference voice"
logger.info(f"Loaded voice presets: {list(voice_presets.keys())}")
return voice_presets
except FileNotFoundError:
logger.warning("Voice examples config file not found. Using empty voice presets.")
return {"EMPTY": "No reference voice"}
except Exception as e:
logger.error(f"Error loading voice presets: {e}")
return {"EMPTY": "No reference voice"}
def get_voice_preset(voice_preset):
"""Get the voice path and text for a given voice preset."""
voice_path = os.path.join(os.path.dirname(__file__), "voice_examples", f"{voice_preset}.wav")
if not os.path.exists(voice_path):
logger.warning(f"Voice preset file not found: {voice_path}")
return None, "Voice preset not found"
text = VOICE_PRESETS.get(voice_preset, "No transcript available")
return voice_path, text
def normalize_chinese_punctuation(text):
"""
Convert Chinese (full-width) punctuation marks to English (half-width) equivalents.
"""
# Mapping of Chinese punctuation to English punctuation
chinese_to_english_punct = {
",": ", ", # comma
"。": ".", # period
":": ":", # colon
";": ";", # semicolon
"?": "?", # question mark
"!": "!", # exclamation mark
"(": "(", # left parenthesis
")": ")", # right parenthesis
"【": "[", # left square bracket
"】": "]", # right square bracket
"《": "<", # left angle quote
"》": ">", # right angle quote
""": '"', # left double quotation
""": '"', # right double quotation
"'": "'", # left single quotation
"'": "'", # right single quotation
"、": ",", # enumeration comma
"—": "-", # em dash
"…": "...", # ellipsis
"·": ".", # middle dot
"「": '"', # left corner bracket
"」": '"', # right corner bracket
"『": '"', # left double corner bracket
"』": '"', # right double corner bracket
}
# Replace each Chinese punctuation with its English counterpart
for zh_punct, en_punct in chinese_to_english_punct.items():
text = text.replace(zh_punct, en_punct)
return text
def normalize_text(transcript: str):
# Skip normalization for Korean text to preserve it properly
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in transcript):
# Korean text detected - minimal normalization
transcript = transcript.strip()
if transcript and not any([transcript.endswith(c) for c in [".", "!", "?", "。", "!", "?"]]):
transcript += "."
return transcript
# Chinese punctuation normalization
transcript = normalize_chinese_punctuation(transcript)
# Other normalizations (e.g., parentheses and other symbols)
transcript = transcript.replace("(", " ")
transcript = transcript.replace(")", " ")
transcript = transcript.replace("°F", " degrees Fahrenheit")
transcript = transcript.replace("°C", " degrees Celsius")
for tag, replacement in [
("[laugh]", "<SE>[Laughter]</SE>"),
("[humming start]", "<SE>[Humming]</SE>"),
("[humming end]", "<SE_e>[Humming]</SE_e>"),
("[music start]", "<SE_s>[Music]</SE_s>"),
("[music end]", "<SE_e>[Music]</SE_e>"),
("[music]", "<SE>[Music]</SE>"),
("[sing start]", "<SE_s>[Singing]</SE_s>"),
("[sing end]", "<SE_e>[Singing]</SE_e>"),
("[applause]", "<SE>[Applause]</SE>"),
("[cheering]", "<SE>[Cheering]</SE>"),
("[cough]", "<SE>[Cough]</SE>"),
]:
transcript = transcript.replace(tag, replacement)
lines = transcript.split("\n")
transcript = "\n".join([" ".join(line.split()) for line in lines if line.strip()])
transcript = transcript.strip()
if not any([transcript.endswith(c) for c in [".", "!", "?", ",", ";", '"', "'", "</SE_e>", "</SE>"]]):
transcript += "."
return transcript
def initialize_engine(model_path, audio_tokenizer_path) -> bool:
"""Initialize the HiggsAudioServeEngine."""
global engine
try:
if engine is not None:
logger.info("Engine already initialized")
return True
logger.info(f"Initializing engine with model: {model_path} and audio tokenizer: {audio_tokenizer_path}")
engine = HiggsAudioServeEngine(
model_name_or_path=model_path,
audio_tokenizer_name_or_path=audio_tokenizer_path,
device=get_current_device(),
)
logger.info(f"Successfully initialized HiggsAudioServeEngine with model: {model_path}")
return True
except Exception as e:
logger.error(f"Failed to initialize engine: {e}")
return False
def check_return_audio(audio_wv: np.ndarray):
# check if the audio returned is all silent
if np.all(audio_wv == 0):
logger.warning("Audio is silent, returning None")
def process_text_output(text_output: str):
# remove all the continuous <|AUDIO_OUT|> tokens with a single <|AUDIO_OUT|>
text_output = re.sub(r"(<\|AUDIO_OUT\|>)+", r"<|AUDIO_OUT|>", text_output)
return text_output
def prepare_chatml_sample(
voice_preset: str,
text: str,
reference_audio: Optional[str] = None,
reference_text: Optional[str] = None,
system_prompt: str = DEFAULT_SYSTEM_PROMPT,
):
"""Prepare a ChatMLSample for the HiggsAudioServeEngine."""
messages = []
# Add system message if provided
if len(system_prompt) > 0:
messages.append(Message(role="system", content=system_prompt))
# Add reference audio if provided
audio_base64 = None
ref_text = ""
if reference_audio:
# Custom reference audio
audio_base64 = encode_audio_file(reference_audio)
ref_text = reference_text or ""
elif voice_preset != "EMPTY":
# Voice preset
voice_path, ref_text = get_voice_preset(voice_preset)
if voice_path is None:
logger.warning(f"Voice preset {voice_preset} not found, skipping reference audio")
else:
audio_base64 = encode_audio_file(voice_path)
# Only add reference audio if we have it
if audio_base64 is not None:
# Add user message with reference text
messages.append(Message(role="user", content=ref_text))
# Add assistant message with audio content
audio_content = AudioContent(raw_audio=audio_base64, audio_url="")
messages.append(Message(role="assistant", content=[audio_content]))
# Add the main user message
text = normalize_text(text)
messages.append(Message(role="user", content=text))
return ChatMLSample(messages=messages)
@spaces.GPU(duration=120)
def text_to_speech(
text,
voice_preset,
reference_audio=None,
reference_text=None,
max_completion_tokens=1024,
temperature=1.0,
top_p=0.95,
top_k=50,
system_prompt=DEFAULT_SYSTEM_PROMPT,
stop_strings=None,
ras_win_len=7,
ras_win_max_num_repeat=2,
):
"""Convert text to speech using HiggsAudioServeEngine."""
global engine
if engine is None:
if not initialize_engine(DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH):
return "❌ Failed to initialize engine", None
try:
# Prepare ChatML sample
chatml_sample = prepare_chatml_sample(voice_preset, text, reference_audio, reference_text, system_prompt)
# Convert stop strings format
if stop_strings is None:
stop_list = DEFAULT_STOP_STRINGS
else:
stop_list = [s for s in stop_strings["stops"] if s.strip()]
request_id = f"tts-playground-{str(uuid.uuid4())}"
logger.info(
f"{request_id}: Generating speech for text: {text[:100]}..., \n"
f"with parameters: temperature={temperature}, top_p={top_p}, top_k={top_k}, stop_list={stop_list}, "
f"ras_win_len={ras_win_len}, ras_win_max_num_repeat={ras_win_max_num_repeat}"
)
start_time = time.time()
# Generate using the engine
response = engine.generate(
chat_ml_sample=chatml_sample,
max_new_tokens=max_completion_tokens,
temperature=temperature,
top_k=top_k if top_k > 0 else None,
top_p=top_p,
stop_strings=stop_list,
ras_win_len=ras_win_len if ras_win_len > 0 else None,
ras_win_max_num_repeat=max(ras_win_len, ras_win_max_num_repeat),
)
generation_time = time.time() - start_time
logger.info(f"{request_id}: Generated audio in {generation_time:.3f} seconds")
gr.Info(f"Generated audio in {generation_time:.3f} seconds")
# Process the response
text_output = process_text_output(response.generated_text)
if response.audio is not None:
# Convert to int16 for Gradio
audio_data = (response.audio * 32767).astype(np.int16)
check_return_audio(audio_data)
return text_output, (response.sampling_rate, audio_data)
else:
logger.warning("No audio generated")
return text_output, None
except Exception as e:
error_msg = f"Error generating speech: {e}"
logger.error(error_msg)
gr.Error(error_msg)
return f"❌ {error_msg}", None
def initialize_globals():
"""Initialize global variables"""
global VOICE_PRESETS
VOICE_PRESETS = load_voice_presets()
def create_ui():
# Try to load theme
try:
my_theme = gr.Theme.load("theme.json")
except Exception as e:
logger.warning(f"Failed to load theme.json: {e}, using default theme")
my_theme = gr.themes.Default()
# Enhanced CSS with animations and visual improvements
custom_css = """
/* Remove focus highlighting */
.gradio-container input:focus,
.gradio-container textarea:focus,
.gradio-container select:focus,
.gradio-container .gr-input:focus,
.gradio-container .gr-textarea:focus,
.gradio-container .gr-textbox:focus,
.gradio-container .gr-textbox:focus-within,
.gradio-container .gr-form:focus-within,
.gradio-container *:focus {
box-shadow: none !important;
border-color: var(--border-color-primary) !important;
outline: none !important;
background-color: var(--input-background-fill) !important;
}
/* Gradient background */
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
/* Main container styling */
.container {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
}
/* Fix dropdown visibility issues */
.gr-dropdown {
position: relative !important;
z-index: 999 !important;
}
.gr-dropdown-container {
position: relative !important;
overflow: visible !important;
}
.gr-dropdown .gr-dropdown-list {
position: absolute !important;
z-index: 1000 !important;
background: white !important;
border: 1px solid #e0e0e0 !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
max-height: 300px !important;
overflow-y: auto !important;
}
/* Ensure parent containers don't clip dropdown */
.gr-form, .gr-box, .gr-group {
overflow: visible !important;
}
.template-selector {
position: relative !important;
z-index: 100 !important;
}
/* Main content area fix */
.main-content {
overflow: visible !important;
position: relative;
z-index: 1;
}
.input-column {
overflow: visible !important;
position: relative;
}
/* Global overflow fix for dropdown visibility */
.gr-panel {
overflow: visible !important;
}
/* Header styling */
.header-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 15px;
margin-bottom: 2rem;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}
.header-title {
color: white;
font-size: 2.5rem;
font-weight: bold;
text-align: center;
margin: 0;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
}
.header-subtitle {
color: rgba(255, 255, 255, 0.9);
text-align: center;
margin-top: 0.5rem;
font-size: 1.1rem;
}
/* Template cards */
.template-card {
background: white;
border-radius: 12px;
padding: 1.5rem;
margin: 0.5rem;
border: 2px solid transparent;
transition: all 0.3s ease;
cursor: pointer;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}
.template-card:hover {
transform: translateY(-3px);
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.15);
border-color: var(--primary-500);
}
.template-card.selected {
border-color: var(--primary-500);
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
}
.template-icon {
font-size: 2rem;
margin-bottom: 0.5rem;
}
/* Voice preset cards */
.voice-card {
background: white;
border-radius: 10px;
padding: 1rem;
margin: 0.5rem;
border: 2px solid #e0e0e0;
transition: all 0.3s ease;
cursor: pointer;
text-align: center;
}
.voice-card:hover {
border-color: var(--primary-500);
transform: scale(1.05);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
}
.voice-card.selected {
border-color: var(--primary-500);
background: #f0f8ff;
}
/* Generate button animation */
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.2rem;
font-weight: bold;
padding: 0.8rem 2rem;
border-radius: 30px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6);
}
.generate-btn:active {
transform: translateY(0);
}
/* Audio player styling */
.audio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 2rem;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}
/* Progress indicator */
.progress-bar {
height: 4px;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
border-radius: 2px;
animation: progress 2s ease-in-out infinite;
}
@keyframes progress {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
/* Accordion styling */
.gr-accordion {
background: white;
border-radius: 10px;
border: 1px solid #e0e0e0;
margin-top: 1rem;
}
/* Info cards */
.info-card {
background: #f8f9fa;
border-left: 4px solid var(--primary-500);
padding: 1rem;
margin: 1rem 0;
border-radius: 5px;
}
/* Tooltips */
.tooltip {
position: relative;
display: inline-block;
border-bottom: 1px dotted black;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 200px;
background-color: #555;
color: #fff;
text-align: center;
border-radius: 6px;
padding: 5px;
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
margin-left: -100px;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
/* Dropdown specific styling to ensure visibility */
.template-selector {
min-width: 300px;
z-index: 1000;
}
.gr-dropdown {
position: relative;
}
.gr-dropdown .gr-dropdown-list {
max-height: 300px;
overflow-y: auto;
z-index: 1001;
}
@media (max-width: 768px) {
.header-title {
font-size: 2rem;
}
.template-card {
margin: 0.25rem;
padding: 1rem;
}
}
"""
default_template = "smart-voice"
"""Create the enhanced Gradio UI."""
with gr.Blocks(theme=my_theme, css=custom_css, title="Higgs Audio TTS") as demo:
# Header with gradient background
gr.HTML("""
<div class="header-container">
<h1 class="header-title">🎙️ Higgs Audio Text-to-Speech</h1>
<p class="header-subtitle">Transform your text into natural, expressive speech with AI</p>
</div>
""")
# Main UI section with fixed overflow
with gr.Row(elem_classes=["main-content"]):
with gr.Column(scale=2, elem_classes=["input-column"]):
# Template selection with visual cards
gr.Markdown("### 🎯 Choose Your Template")
# Define available templates
available_templates = list(PREDEFINED_EXAMPLES.keys())
# Use Radio instead of Dropdown for better visibility
template_dropdown = gr.Radio(
label="TTS Template",
choices=available_templates,
value=default_template,
info="Select a predefined template to get started quickly",
type="value"
)
# Template description with enhanced styling
template_description = gr.HTML(
value=f'<div class="info-card">{PREDEFINED_EXAMPLES[default_template]["description"]}</div>',
visible=True,
)
# System prompt with better styling
with gr.Group():
gr.Markdown("### 🔧 System Configuration")
system_prompt = gr.TextArea(
label="System Prompt",
placeholder="Enter system prompt to guide the model...",
value=PREDEFINED_EXAMPLES[default_template]["system_prompt"],
lines=3,
elem_classes=["system-prompt"]
)
# Input text with character counter
with gr.Group():
gr.Markdown("### ✍️ Your Text")
input_text = gr.TextArea(
label="Input Text",
placeholder="Type the text you want to convert to speech...",
value=PREDEFINED_EXAMPLES[default_template]["input_text"],
lines=6,
elem_classes=["input-text"]
)
char_count = gr.Markdown(f"Character count: {len(PREDEFINED_EXAMPLES[default_template]['input_text'])}")
# Voice selection section
with gr.Group(visible=False) as voice_section:
gr.Markdown("### 🎭 Voice Selection")
voice_preset = gr.Dropdown(
label="Voice Preset",
choices=list(VOICE_PRESETS.keys()),
value="EMPTY",
interactive=False,
visible=False,
elem_classes=["voice-preset"]
)
with gr.Accordion(
"🎤 Custom Reference Audio", open=False, visible=False
) as custom_reference_accordion:
reference_audio = gr.Audio(
label="Upload Reference Audio",
type="filepath",
elem_classes=["reference-audio"]
)
reference_text = gr.TextArea(
label="Reference Text (transcript of the reference audio)",
placeholder="Enter the transcript of your reference audio for better voice cloning...",
lines=3,
elem_classes=["reference-text"]
)
# Advanced parameters with better organization
with gr.Accordion("⚙️ Advanced Parameters", open=False):
with gr.Row():
with gr.Column():
max_completion_tokens = gr.Slider(
minimum=128,
maximum=4096,
value=1024,
step=10,
label="Max Completion Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.5,
value=1.0,
step=0.1,
label="Temperature",
info="Controls randomness in generation"
)
with gr.Column():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top P",
info="Nucleus sampling parameter"
)
top_k = gr.Slider(
minimum=-1,
maximum=100,
value=50,
step=1,
label="Top K",
info="Top-k sampling parameter (-1 to disable)"
)
with gr.Row():
with gr.Column():
ras_win_len = gr.Slider(
minimum=0,
maximum=10,
value=7,
step=1,
label="RAS Window Length",
info="Window length for repetition avoidance sampling"
)
with gr.Column():
ras_win_max_num_repeat = gr.Slider(
minimum=1,
maximum=10,
value=2,
step=1,
label="RAS Max Num Repeat",
info="Maximum repetitions allowed in the window"
)
# Stop strings with better UI
gr.Markdown("#### Stop Strings")
stop_strings = gr.Dataframe(
label="Stop Strings",
headers=["stops"],
datatype=["str"],
value=[[s] for s in DEFAULT_STOP_STRINGS],
interactive=True,
col_count=(1, "fixed"),
elem_classes=["stop-strings"]
)
# Generate button with enhanced styling
with gr.Row():
submit_btn = gr.Button(
"🚀 Generate Speech",
variant="primary",
scale=1,
elem_classes=["generate-btn"]
)
# Output column with better organization
with gr.Column(scale=2):
# Status and progress section
with gr.Group():
gr.Markdown("### 📊 Generation Status")
status_text = gr.Markdown("Ready to generate speech...", elem_classes=["status-text"])
# Model response section
with gr.Group():
gr.Markdown("### 💬 Model Response")
output_text = gr.TextArea(
label="Generated Text Output",
lines=3,
interactive=False,
elem_classes=["output-text"]
)
# Audio output with enhanced player
with gr.Group():
gr.Markdown("### 🎵 Generated Audio")
output_audio = gr.Audio(
label="Audio Player",
interactive=False,
autoplay=True,
elem_classes=["audio-container"]
)
with gr.Row():
stop_btn = gr.Button(
"⏹️ Stop Playback",
variant="secondary",
elem_classes=["stop-btn"]
)
download_btn = gr.Button(
"💾 Download Audio",
variant="secondary",
elem_classes=["download-btn"],
visible=False
)
# Quick tips section
gr.Markdown("""
<div class="info-card">
<h4>💡 Quick Tips:</h4>
<ul>
<li>For voice cloning, upload a clear 10-30 second audio sample</li>
<li>Use [music start] and [music end] tags for background music</li>
<li>Add [SPEAKER0] and [SPEAKER1] tags for multi-speaker dialogue</li>
<li>Experiment with temperature (0.8-1.2) for varied speech styles</li>
</ul>
</div>
""")
# Voice samples section with visual cards
with gr.Row(visible=False) as voice_samples_section:
gr.Markdown("### 🎧 Voice Samples Library")
voice_samples_table = gr.Dataframe(
headers=["Voice Preset", "Sample Text"],
datatype=["str", "str"],
value=[[preset, text] for preset, text in VOICE_PRESETS.items() if preset != "EMPTY"],
interactive=False,
elem_classes=["voice-samples-table"]
)
sample_audio = gr.Audio(
label="🔊 Preview Voice Sample",
elem_classes=["sample-audio"]
)
# Function to update character count
def update_char_count(text):
return f"Character count: {len(text)}"
# Function to play voice sample when clicking on a row
def play_voice_sample(evt: gr.SelectData):
try:
preset_names = [preset for preset in VOICE_PRESETS.keys() if preset != "EMPTY"]
if evt.index[0] < len(preset_names):
preset = preset_names[evt.index[0]]
voice_path, _ = get_voice_preset(preset)
if voice_path and os.path.exists(voice_path):
return voice_path
else:
gr.Warning(f"Voice sample file not found for preset: {preset}")
return None
else:
gr.Warning("Invalid voice preset selection")
return None
except Exception as e:
logger.error(f"Error playing voice sample: {e}")
gr.Error(f"Error playing voice sample: {e}")
return None
# Function to handle template selection
def apply_template(template_name):
if template_name in PREDEFINED_EXAMPLES:
template = PREDEFINED_EXAMPLES[template_name]
is_voice_clone = template_name == "voice-clone"
voice_preset_value = "belinda" if is_voice_clone else "EMPTY"
ras_win_len_value = 0 if template_name == "single-speaker-bgm" else 7
description_html = f'<div class="info-card">{template["description"]}</div>'
return (
template["system_prompt"], # system_prompt
template["input_text"], # input_text
description_html, # template_description
gr.update(
value=voice_preset_value,
interactive=is_voice_clone,
visible=is_voice_clone
), # voice_preset
gr.update(visible=is_voice_clone), # custom reference accordion
gr.update(visible=is_voice_clone), # voice samples section
ras_win_len_value, # ras_win_len
gr.update(visible=is_voice_clone), # voice_section
update_char_count(template["input_text"]), # char_count
)
return (gr.update(),) * 9
# Enhanced text_to_speech wrapper with status updates
def text_to_speech_with_status(
text, voice_preset, reference_audio, reference_text,
max_completion_tokens, temperature, top_p, top_k,
system_prompt, stop_strings, ras_win_len, ras_win_max_num_repeat
):
# Update status
yield "🔄 Initializing model...", None, None, gr.update(visible=False)
# Call the actual TTS function
result_text, audio_result = text_to_speech(
text, voice_preset, reference_audio, reference_text,
max_completion_tokens, temperature, top_p, top_k,
system_prompt, stop_strings, ras_win_len, ras_win_max_num_repeat
)
if audio_result:
status = "✅ Speech generated successfully!"
download_visible = True
else:
status = "❌ Failed to generate speech"
download_visible = False
yield status, result_text, audio_result, gr.update(visible=download_visible)
# Set up event handlers
# Character count update
input_text.change(
fn=update_char_count,
inputs=[input_text],
outputs=[char_count]
)
# Template selection
template_dropdown.change(
fn=apply_template,
inputs=[template_dropdown],
outputs=[
system_prompt,
input_text,
template_description,
voice_preset,
custom_reference_accordion,
voice_samples_section,
ras_win_len,
voice_section,
char_count,
],
)
# Voice sample preview
voice_samples_table.select(
fn=play_voice_sample,
outputs=[sample_audio]
)
# Generate button with status updates
submit_btn.click(
fn=text_to_speech_with_status,
inputs=[
input_text,
voice_preset,
reference_audio,
reference_text,
max_completion_tokens,
temperature,
top_p,
top_k,
system_prompt,
stop_strings,
ras_win_len,
ras_win_max_num_repeat,
],
outputs=[status_text, output_text, output_audio, download_btn],
api_name="generate_speech",
)
# Stop button functionality
stop_btn.click(
fn=lambda: None,
inputs=[],
outputs=[output_audio],
js="() => {const audio = document.querySelector('audio'); if(audio) audio.pause(); return null;}",
)
# Download button functionality
download_btn.click(
fn=lambda x: x,
inputs=[output_audio],
outputs=[],
js="(audio) => {if(audio) {const a = document.createElement('a'); a.href = audio.url; a.download = 'generated_speech.wav'; a.click();}}",
)
return demo
def main():
"""Main function to parse arguments and launch the UI."""
global DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH
parser = argparse.ArgumentParser(description="Gradio UI for Text-to-Speech using HiggsAudioServeEngine")
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help="Device to run the model on.",
)
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host for the Gradio interface.")
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio interface.")
args = parser.parse_args()
# Initialize global variables
initialize_globals()
# Create and launch the UI
demo = create_ui()
demo.launch(
server_name=args.host,
server_port=args.port,
share=False,
show_error=True
)
if __name__ == "__main__":
main() |