Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,997 Bytes
07f1f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
class HiggsAudioEncoderConfig(PretrainedConfig):
"""Configuration of the Audio encoder in Higgs-Audio."""
model_type = "higgs_audio_encoder"
def __init__(
self,
num_mel_bins=128,
encoder_layers=32,
encoder_attention_heads=20,
encoder_ffn_dim=5120,
encoder_layerdrop=0.0,
d_model=1280,
dropout=0.0,
attention_dropout=0.0,
activation_function="gelu",
activation_dropout=0.0,
scale_embedding=False,
init_std=0.02,
max_source_positions=1500,
pad_token_id=128001,
**kwargs,
):
super().__init__(**kwargs)
self.num_mel_bins = num_mel_bins
self.d_model = d_model
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_function = activation_function
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.num_hidden_layers = encoder_layers
self.init_std = init_std
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.max_source_positions = max_source_positions
self.pad_token_id = pad_token_id
class HiggsAudioConfig(PretrainedConfig):
r"""
This is the configuration class for the HiggsAudioModel.
Args:
text_config (`Union[AutoConfig, dict]`):
The config object or dictionary of the text backbone.
audio_encoder_config (`Union[AutoConfig, dict]`):
The config object or dictionary of the whisper encoder.
The audio encoder will be bidirectional and will be only available for audio understanding.
audio_tokenizer_config
The config object or dictionary of the audio tokenizer.
audio_adapter_type
The type of audio adapter to use. We support two types of adapter:
- stack:
We stack additional Transformer layers after the main LLM backbone for audio generation.
- dual_ffn:
For selected part of the LLM backbone, we replace the text FFN with a dual FFN architecture
that contains an additional audio FFN. The audio FFN will be triggered when the location is marked for audio tokens.
- dual_ffn_fast_forward:
We pick a few layers in the LLM backbone to plug-in the audio FFN. For the remaining layers,
the audio hidden states will be directly fast-forward to the next layer.
This reduces the computational cost for audio generation.
audio_embed_avg (`bool`, *optional*, defaults to False):
Whether to average the audio embeddings before sending them to the text attention layer.
audio_ffn_hidden_size
The hidden size of the audio feedforward network in dual-path FFN
audio_ffn_intermediate_size
The intermediate size of the audio feedforward network in dual-path FFN
audio_dual_ffn_layers
The layers in the LLM backbone to plug-in the dual FFN layer (mixture of audio FFN and text FFN).
audio_decoder_proj_num_attention (`int`, *optional*, defaults to 0):
The number of attention heads in the audio decoder projection layer.
use_delay_pattern (`bool`, *optional*, defaults to False):
Whether to use delay pattern in the audio decoder.
skip_audio_tower (`bool`, *optional*, defaults to False):
Whether to skip the audio tower in the audio encoder.
use_audio_out_embed_projector (`bool`, *optional*, defaults to False):
Whether to use an embedding projector to map audio out embeddings.
use_audio_out_self_attention (`bool`, *optional*, defaults to False):
Whether to use self-attention to aggregate information from audio-tokens before sending to the text attention layer.
audio_num_codebooks (`int`, *optional*, defaults to 12):
The number of codebooks in RVQGAN.
audio_codebook_size (`int`, *optional*, defaults to 1024):
The size of each codebook in RVQGAN.
audio_stream_bos_id
The id of the bos in the audio stream
audio_stream_eos_id
The id of the eos in the audio stream
audio_bos_token (`str`, *optional*, defaults to "<|audio_bos|>"):
The special `<|audio_bos|>` token. In Higgs-Audio, it is mapped to 128011,
which is the index of `<|reserved_special_token_3|>` in Llama-3.1-8B-Instruct's tokenizer.
audio_eos_token (`str`, *optional*, defaults to "<|audio_eos|>"):
The special `<|audio_eos|>` token. We use 128012 as the default value,
which is the index of `<|reserved_special_token_4|>` in Llama-3.1-8B-Instruct's tokenizer.
audio_out_bos_token (`str`, *optional*, defaults to "<|audio_out_bos|>"):
The special `<|audio_out_bos|>` token. We use 128013 as the default value,
which is the index of `<|reserved_special_token_5|>` in Llama-3.1-8B-Instruct's tokenizer.
audio_token (`str`, *optional*, defaults to "<|AUDIO|>"):
The special `<|AUDIO|>` token. We use 128015 as the default value,
which is the index of `<|reserved_special_token_7|>` in Llama-3.1-8B-Instruct's tokenizer.
This token indicates that the location should be filled in with whisper features.
audio_out_token (`str`, *optional*, defaults to "<|AUDIO_OUT|>"):
The special `<|AUDIO_OUT|>` token. We use 128016 as the default value,
which is the index of `<|reserved_special_token_8|>` in Llama-3.1-8B-Instruct's tokenizer.
This token indicates that the location should be filled in with audio tokens extracted via audio tokenizer.
"""
model_type = "higgs_audio"
is_composition = True
def __init__(
self,
text_config=None,
audio_encoder_config=None,
audio_tokenizer_config=None,
audio_adapter_type="stack",
audio_embed_avg=False,
audio_ffn_hidden_size=4096,
audio_ffn_intermediate_size=14336,
audio_dual_ffn_layers=None,
audio_decoder_proj_num_layers=0,
encode_whisper_embed=True,
encode_audio_in_tokens=False,
use_delay_pattern=False,
skip_audio_tower=False,
use_audio_out_embed_projector=False,
use_audio_out_self_attention=False,
use_rq_transformer=False,
rq_transformer_hidden_size=None,
rq_transformer_intermediate_size=None,
rq_transformer_num_attention_heads=None,
rq_transformer_num_key_value_heads=None,
rq_transformer_num_hidden_layers=3,
audio_num_codebooks=12,
audio_codebook_size=1024,
audio_stream_bos_id=1024,
audio_stream_eos_id=1025,
audio_bos_token="<|audio_bos|>",
audio_eos_token="<|audio_eos|>",
audio_out_bos_token="<|audio_out_bos|>",
audio_in_token="<|AUDIO|>",
audio_out_token="<|AUDIO_OUT|>",
audio_in_token_idx=128015,
audio_out_token_idx=128016,
pad_token_id=128001,
audio_out_bos_token_id=128013,
audio_eos_token_id=128012,
**kwargs,
):
if isinstance(audio_encoder_config, dict):
audio_encoder_config["model_type"] = (
audio_encoder_config["model_type"] if "model_type" in audio_encoder_config else "higgs_audio_encoder"
)
audio_encoder_config = CONFIG_MAPPING[audio_encoder_config["model_type"]](**audio_encoder_config)
elif audio_encoder_config is None:
audio_encoder_config = HiggsAudioEncoderConfig()
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
assert audio_adapter_type in [
"stack",
"dual_ffn",
"dual_ffn_fast_forward",
], f"Invalid audio adapter type: {audio_adapter_type}"
if audio_adapter_type.startswith("dual_ffn"):
assert audio_dual_ffn_layers is not None, (
"audio_dual_ffn_layers must be specified when using dual_ffn adapter."
)
self.text_config = text_config
self.audio_encoder_config = audio_encoder_config
self.audio_tokenizer_config = audio_tokenizer_config
self.audio_adapter_type = audio_adapter_type
self.audio_embed_avg = audio_embed_avg
self.audio_ffn_hidden_size = audio_ffn_hidden_size
self.audio_ffn_intermediate_size = audio_ffn_intermediate_size
self.audio_dual_ffn_layers = audio_dual_ffn_layers
self.audio_decoder_proj_num_layers = audio_decoder_proj_num_layers
self.encode_whisper_embed = encode_whisper_embed
self.encode_audio_in_tokens = encode_audio_in_tokens
self.use_delay_pattern = use_delay_pattern
self.skip_audio_tower = skip_audio_tower
self.use_audio_out_embed_projector = use_audio_out_embed_projector
self.use_audio_out_self_attention = use_audio_out_self_attention
self.use_rq_transformer = use_rq_transformer
if self.use_rq_transformer:
assert not self.use_delay_pattern, "Delay pattern is not supported if you turned on RQ-Transformer!"
self.rq_transformer_hidden_size = rq_transformer_hidden_size
self.rq_transformer_intermediate_size = rq_transformer_intermediate_size
self.rq_transformer_num_attention_heads = rq_transformer_num_attention_heads
self.rq_transformer_num_key_value_heads = rq_transformer_num_key_value_heads
self.rq_transformer_num_hidden_layers = rq_transformer_num_hidden_layers
if use_rq_transformer:
# For RQ-Transformer, we set the hidden_size to the same as the text model's hidden size if it is not specified.
if self.rq_transformer_hidden_size is None:
self.rq_transformer_hidden_size = text_config.hidden_size
assert self.rq_transformer_hidden_size % 128 == 0
if self.rq_transformer_intermediate_size is None:
self.rq_transformer_intermediate_size = text_config.intermediate_size
if self.rq_transformer_num_attention_heads is None:
self.rq_transformer_num_attention_heads = self.rq_transformer_hidden_size // 128
if self.rq_transformer_num_key_value_heads is None:
self.rq_transformer_num_key_value_heads = self.rq_transformer_hidden_size // 128 // 4
assert self.rq_transformer_hidden_size % self.rq_transformer_num_attention_heads == 0
assert self.rq_transformer_hidden_size % self.rq_transformer_num_key_value_heads == 0
self.audio_num_codebooks = audio_num_codebooks
self.audio_codebook_size = audio_codebook_size
self.audio_bos_token = audio_bos_token
self.audio_eos_token = audio_eos_token
self.audio_out_bos_token = audio_out_bos_token
self.audio_in_token = audio_in_token
self.audio_out_token = audio_out_token
self.audio_in_token_idx = audio_in_token_idx
self.audio_out_token_idx = audio_out_token_idx
self.audio_stream_bos_id = audio_stream_bos_id
self.audio_stream_eos_id = audio_stream_eos_id
self.audio_out_bos_token_id = audio_out_bos_token_id
self.audio_eos_token_id = audio_eos_token_id
super().__init__(**kwargs)
self.pad_token_id = pad_token_id
|