""" Gradio UI for Text-to-Speech using HiggsAudioServeEngine Enhanced with visual improvements and better user experience """ import argparse import base64 import os import uuid import json from typing import Optional import gradio as gr from loguru import logger import numpy as np import time from functools import lru_cache import re import spaces import torch # Import HiggsAudio components from higgs_audio.serve.serve_engine import HiggsAudioServeEngine from higgs_audio.data_types import ChatMLSample, AudioContent, Message # Global engine instance engine = None VOICE_PRESETS = {} # Default model configuration DEFAULT_MODEL_PATH = "bosonai/higgs-audio-v2-generation-3B-base" DEFAULT_AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer" SAMPLE_RATE = 24000 DEFAULT_SYSTEM_PROMPT = ( "Generate audio following instruction.\n\n" "<|scene_desc_start|>\n" "Audio is recorded from a quiet room.\n" "Support for multiple languages including English, Chinese, Korean, Japanese, and more.\n" "<|scene_desc_end|>" ) DEFAULT_STOP_STRINGS = ["<|end_of_text|>", "<|eot_id|>"] # Predefined examples for system and input messages PREDEFINED_EXAMPLES = { "voice-clone": { "system_prompt": "", "input_text": "Hey there! I'm your friendly voice twin in the making. Pick a voice preset below or upload your own audio - let's clone some vocals and bring your voice to life! ", "description": "🎭 Voice Clone - Clone any voice with reference audio. Leave the system prompt empty for best results.", "icon": "🎭", "color": "#FF6B6B" }, "smart-voice": { "system_prompt": DEFAULT_SYSTEM_PROMPT, "input_text": "The sun rises in the east and sets in the west. This simple fact has been observed by humans for thousands of years.", "description": "🧠 Smart Voice - Generate natural speech based on context", "icon": "🧠", "color": "#4ECDC4" }, "multispeaker-voice-description": { "system_prompt": "You are an AI assistant designed to convert text into speech.\n" "If the user's message includes a [SPEAKER*] tag, do not read out the tag and generate speech for the following text, using the specified voice.\n" "If no speaker tag is present, select a suitable voice on your own.\n\n" "<|scene_desc_start|>\n" "SPEAKER0: feminine\n" "SPEAKER1: masculine\n" "<|scene_desc_end|>", "input_text": "[SPEAKER0] I can't believe you did that without even asking me first!\n" "[SPEAKER1] Oh, come on! It wasn't a big deal, and I knew you would overreact like this.\n" "[SPEAKER0] Overreact? You made a decision that affects both of us without even considering my opinion!\n" "[SPEAKER1] Because I didn't have time to sit around waiting for you to make up your mind! Someone had to act.", "description": "👥 Multi-Speaker - Different voices for dialogue and conversations", "icon": "👥", "color": "#95E1D3" }, "single-speaker-voice-description": { "system_prompt": "Generate audio following instruction.\n\n" "<|scene_desc_start|>\n" "SPEAKER0: He speaks with a clear British accent and a conversational, inquisitive tone. His delivery is articulate and at a moderate pace, and very clear audio.\n" "<|scene_desc_end|>", "input_text": "Hey, everyone! Welcome back to Tech Talk Tuesdays.\n" "It's your host, Alex, and today, we're diving into a topic that's become absolutely crucial in the tech world — deep learning.\n" "And let's be honest, if you've been even remotely connected to tech, AI, or machine learning lately, you know that deep learning is everywhere.\n" "\n" "So here's the big question: Do you want to understand how deep learning works?\n", "description": "🎙️ Voice Description - Generate speech with specific voice characteristics", "icon": "🎙️", "color": "#F38181" }, "single-speaker-zh": { "system_prompt": "Generate audio following instruction.\n\n" "<|scene_desc_start|>\n" "Audio is recorded from a quiet room.\n" "<|scene_desc_end|>", "input_text": "大家好, 欢迎收听本期的跟李沐学AI. 今天沐哥在忙着洗数据, 所以由我, 希格斯主播代替他讲这期视频.\n" "今天我们要聊的是一个你绝对不能忽视的话题: 多模态学习.\n" "那么, 问题来了, 你真的了解多模态吗? 你知道如何自己动手构建多模态大模型吗.\n" "或者说, 你能察觉到我其实是个机器人吗?", "description": "🇨🇳 Chinese Speech - Generate natural Chinese speech", "icon": "🇨🇳", "color": "#AA96DA" }, "single-speaker-kr": { "system_prompt": "Generate audio following instruction.\n\n" "<|scene_desc_start|>\n" "Audio is recorded from a quiet room.\n" "<|scene_desc_end|>", "input_text": "안녕하세요, 오늘은 인공지능의 미래에 대해 이야기해보겠습니다.\n" "최근 AI 기술의 발전이 정말 놀라운데요,\n" "특히 음성 합성 기술은 이제 사람과 구별하기 어려울 정도로 자연스러워졌습니다.\n" "여러분은 제가 실제 사람인지 AI인지 구별할 수 있으신가요?", "description": "🇰🇷 Korean Speech - Generate natural Korean speech", "icon": "🇰🇷", "color": "#FFB6C1" }, "single-speaker-bgm": { "system_prompt": DEFAULT_SYSTEM_PROMPT, "input_text": "[music start] I will remember this, thought Ender, when I am defeated. To keep dignity, and give honor where it's due, so that defeat is not disgrace. And I hope I don't have to do it often. [music end]", "description": "🎵 Speech with BGM - Add background music to your speech (experimental)", "icon": "🎵", "color": "#FCBAD3" }, } @lru_cache(maxsize=20) def encode_audio_file(file_path): """Encode an audio file to base64.""" with open(file_path, "rb") as audio_file: return base64.b64encode(audio_file.read()).decode("utf-8") def get_current_device(): """Get the current device.""" return "cuda" if torch.cuda.is_available() else "cpu" def load_voice_presets(): """Load the voice presets from the voice_examples directory.""" try: config_path = os.path.join(os.path.dirname(__file__), "voice_examples", "config.json") # Check if directory exists if not os.path.exists(os.path.dirname(config_path)): logger.warning("Voice examples directory not found") return {"EMPTY": "No reference voice"} with open(config_path, "r") as f: voice_dict = json.load(f) voice_presets = {k: v["transcript"] for k, v in voice_dict.items()} voice_presets["EMPTY"] = "No reference voice" logger.info(f"Loaded voice presets: {list(voice_presets.keys())}") return voice_presets except FileNotFoundError: logger.warning("Voice examples config file not found. Using empty voice presets.") return {"EMPTY": "No reference voice"} except Exception as e: logger.error(f"Error loading voice presets: {e}") return {"EMPTY": "No reference voice"} def get_voice_preset(voice_preset): """Get the voice path and text for a given voice preset.""" voice_path = os.path.join(os.path.dirname(__file__), "voice_examples", f"{voice_preset}.wav") if not os.path.exists(voice_path): logger.warning(f"Voice preset file not found: {voice_path}") return None, "Voice preset not found" text = VOICE_PRESETS.get(voice_preset, "No transcript available") return voice_path, text def normalize_chinese_punctuation(text): """ Convert Chinese (full-width) punctuation marks to English (half-width) equivalents. """ # Mapping of Chinese punctuation to English punctuation chinese_to_english_punct = { ",": ", ", # comma "。": ".", # period ":": ":", # colon ";": ";", # semicolon "?": "?", # question mark "!": "!", # exclamation mark "(": "(", # left parenthesis ")": ")", # right parenthesis "【": "[", # left square bracket "】": "]", # right square bracket "《": "<", # left angle quote "》": ">", # right angle quote """: '"', # left double quotation """: '"', # right double quotation "'": "'", # left single quotation "'": "'", # right single quotation "、": ",", # enumeration comma "—": "-", # em dash "…": "...", # ellipsis "·": ".", # middle dot "「": '"', # left corner bracket "」": '"', # right corner bracket "『": '"', # left double corner bracket "』": '"', # right double corner bracket } # Replace each Chinese punctuation with its English counterpart for zh_punct, en_punct in chinese_to_english_punct.items(): text = text.replace(zh_punct, en_punct) return text def normalize_text(transcript: str): # Skip normalization for Korean text to preserve it properly if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in transcript): # Korean text detected - minimal normalization transcript = transcript.strip() if transcript and not any([transcript.endswith(c) for c in [".", "!", "?", "。", "!", "?"]]): transcript += "." return transcript # Chinese punctuation normalization transcript = normalize_chinese_punctuation(transcript) # Other normalizations (e.g., parentheses and other symbols) transcript = transcript.replace("(", " ") transcript = transcript.replace(")", " ") transcript = transcript.replace("°F", " degrees Fahrenheit") transcript = transcript.replace("°C", " degrees Celsius") for tag, replacement in [ ("[laugh]", "[Laughter]"), ("[humming start]", "[Humming]"), ("[humming end]", "[Humming]"), ("[music start]", "[Music]"), ("[music end]", "[Music]"), ("[music]", "[Music]"), ("[sing start]", "[Singing]"), ("[sing end]", "[Singing]"), ("[applause]", "[Applause]"), ("[cheering]", "[Cheering]"), ("[cough]", "[Cough]"), ]: transcript = transcript.replace(tag, replacement) lines = transcript.split("\n") transcript = "\n".join([" ".join(line.split()) for line in lines if line.strip()]) transcript = transcript.strip() if not any([transcript.endswith(c) for c in [".", "!", "?", ",", ";", '"', "'", "", ""]]): transcript += "." return transcript def initialize_engine(model_path, audio_tokenizer_path) -> bool: """Initialize the HiggsAudioServeEngine.""" global engine try: if engine is not None: logger.info("Engine already initialized") return True logger.info(f"Initializing engine with model: {model_path} and audio tokenizer: {audio_tokenizer_path}") engine = HiggsAudioServeEngine( model_name_or_path=model_path, audio_tokenizer_name_or_path=audio_tokenizer_path, device=get_current_device(), ) logger.info(f"Successfully initialized HiggsAudioServeEngine with model: {model_path}") return True except Exception as e: logger.error(f"Failed to initialize engine: {e}") return False def check_return_audio(audio_wv: np.ndarray): # check if the audio returned is all silent if np.all(audio_wv == 0): logger.warning("Audio is silent, returning None") def process_text_output(text_output: str): # remove all the continuous <|AUDIO_OUT|> tokens with a single <|AUDIO_OUT|> text_output = re.sub(r"(<\|AUDIO_OUT\|>)+", r"<|AUDIO_OUT|>", text_output) return text_output def prepare_chatml_sample( voice_preset: str, text: str, reference_audio: Optional[str] = None, reference_text: Optional[str] = None, system_prompt: str = DEFAULT_SYSTEM_PROMPT, ): """Prepare a ChatMLSample for the HiggsAudioServeEngine.""" messages = [] # Add system message if provided if len(system_prompt) > 0: messages.append(Message(role="system", content=system_prompt)) # Add reference audio if provided audio_base64 = None ref_text = "" if reference_audio: # Custom reference audio audio_base64 = encode_audio_file(reference_audio) ref_text = reference_text or "" elif voice_preset != "EMPTY": # Voice preset voice_path, ref_text = get_voice_preset(voice_preset) if voice_path is None: logger.warning(f"Voice preset {voice_preset} not found, skipping reference audio") else: audio_base64 = encode_audio_file(voice_path) # Only add reference audio if we have it if audio_base64 is not None: # Add user message with reference text messages.append(Message(role="user", content=ref_text)) # Add assistant message with audio content audio_content = AudioContent(raw_audio=audio_base64, audio_url="") messages.append(Message(role="assistant", content=[audio_content])) # Add the main user message text = normalize_text(text) messages.append(Message(role="user", content=text)) return ChatMLSample(messages=messages) @spaces.GPU(duration=120) def text_to_speech( text, voice_preset, reference_audio=None, reference_text=None, max_completion_tokens=1024, temperature=1.0, top_p=0.95, top_k=50, system_prompt=DEFAULT_SYSTEM_PROMPT, stop_strings=None, ras_win_len=7, ras_win_max_num_repeat=2, ): """Convert text to speech using HiggsAudioServeEngine.""" global engine if engine is None: if not initialize_engine(DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH): return "❌ Failed to initialize engine", None try: # Prepare ChatML sample chatml_sample = prepare_chatml_sample(voice_preset, text, reference_audio, reference_text, system_prompt) # Convert stop strings format if stop_strings is None: stop_list = DEFAULT_STOP_STRINGS else: stop_list = [s for s in stop_strings["stops"] if s.strip()] request_id = f"tts-playground-{str(uuid.uuid4())}" logger.info( f"{request_id}: Generating speech for text: {text[:100]}..., \n" f"with parameters: temperature={temperature}, top_p={top_p}, top_k={top_k}, stop_list={stop_list}, " f"ras_win_len={ras_win_len}, ras_win_max_num_repeat={ras_win_max_num_repeat}" ) start_time = time.time() # Generate using the engine response = engine.generate( chat_ml_sample=chatml_sample, max_new_tokens=max_completion_tokens, temperature=temperature, top_k=top_k if top_k > 0 else None, top_p=top_p, stop_strings=stop_list, ras_win_len=ras_win_len if ras_win_len > 0 else None, ras_win_max_num_repeat=max(ras_win_len, ras_win_max_num_repeat), ) generation_time = time.time() - start_time logger.info(f"{request_id}: Generated audio in {generation_time:.3f} seconds") gr.Info(f"Generated audio in {generation_time:.3f} seconds") # Process the response text_output = process_text_output(response.generated_text) if response.audio is not None: # Convert to int16 for Gradio audio_data = (response.audio * 32767).astype(np.int16) check_return_audio(audio_data) return text_output, (response.sampling_rate, audio_data) else: logger.warning("No audio generated") return text_output, None except Exception as e: error_msg = f"Error generating speech: {e}" logger.error(error_msg) gr.Error(error_msg) return f"❌ {error_msg}", None def initialize_globals(): """Initialize global variables""" global VOICE_PRESETS VOICE_PRESETS = load_voice_presets() def create_ui(): # Try to load theme try: my_theme = gr.Theme.load("theme.json") except Exception as e: logger.warning(f"Failed to load theme.json: {e}, using default theme") my_theme = gr.themes.Default() # Enhanced CSS with animations and visual improvements custom_css = """ /* Remove focus highlighting */ .gradio-container input:focus, .gradio-container textarea:focus, .gradio-container select:focus, .gradio-container .gr-input:focus, .gradio-container .gr-textarea:focus, .gradio-container .gr-textbox:focus, .gradio-container .gr-textbox:focus-within, .gradio-container .gr-form:focus-within, .gradio-container *:focus { box-shadow: none !important; border-color: var(--border-color-primary) !important; outline: none !important; background-color: var(--input-background-fill) !important; } /* Gradient background */ .gradio-container { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); min-height: 100vh; } /* Main container styling */ .container { backdrop-filter: blur(10px); background: rgba(255, 255, 255, 0.95); border-radius: 20px; box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37); } /* Fix dropdown visibility issues */ .gr-dropdown { position: relative !important; z-index: 999 !important; } .gr-dropdown-container { position: relative !important; overflow: visible !important; } .gr-dropdown .gr-dropdown-list { position: absolute !important; z-index: 1000 !important; background: white !important; border: 1px solid #e0e0e0 !important; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important; max-height: 300px !important; overflow-y: auto !important; } /* Ensure parent containers don't clip dropdown */ .gr-form, .gr-box, .gr-group { overflow: visible !important; } .template-selector { position: relative !important; z-index: 100 !important; } /* Main content area fix */ .main-content { overflow: visible !important; position: relative; z-index: 1; } .input-column { overflow: visible !important; position: relative; } /* Global overflow fix for dropdown visibility */ .gr-panel { overflow: visible !important; } /* Header styling */ .header-container { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 2rem; border-radius: 15px; margin-bottom: 2rem; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); } .header-title { color: white; font-size: 2.5rem; font-weight: bold; text-align: center; margin: 0; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2); } .header-subtitle { color: rgba(255, 255, 255, 0.9); text-align: center; margin-top: 0.5rem; font-size: 1.1rem; } /* Template cards */ .template-card { background: white; border-radius: 12px; padding: 1.5rem; margin: 0.5rem; border: 2px solid transparent; transition: all 0.3s ease; cursor: pointer; box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); } .template-card:hover { transform: translateY(-3px); box-shadow: 0 4px 20px rgba(0, 0, 0, 0.15); border-color: var(--primary-500); } .template-card.selected { border-color: var(--primary-500); background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); } .template-icon { font-size: 2rem; margin-bottom: 0.5rem; } /* Voice preset cards */ .voice-card { background: white; border-radius: 10px; padding: 1rem; margin: 0.5rem; border: 2px solid #e0e0e0; transition: all 0.3s ease; cursor: pointer; text-align: center; } .voice-card:hover { border-color: var(--primary-500); transform: scale(1.05); box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); } .voice-card.selected { border-color: var(--primary-500); background: #f0f8ff; } /* Generate button animation */ .generate-btn { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; font-size: 1.2rem; font-weight: bold; padding: 0.8rem 2rem; border-radius: 30px; border: none; cursor: pointer; transition: all 0.3s ease; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4); } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6); } .generate-btn:active { transform: translateY(0); } /* Audio player styling */ .audio-container { background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 2rem; border-radius: 15px; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); } /* Progress indicator */ .progress-bar { height: 4px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); border-radius: 2px; animation: progress 2s ease-in-out infinite; } @keyframes progress { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } /* Accordion styling */ .gr-accordion { background: white; border-radius: 10px; border: 1px solid #e0e0e0; margin-top: 1rem; } /* Info cards */ .info-card { background: #f8f9fa; border-left: 4px solid var(--primary-500); padding: 1rem; margin: 1rem 0; border-radius: 5px; } /* Tooltips */ .tooltip { position: relative; display: inline-block; border-bottom: 1px dotted black; } .tooltip .tooltiptext { visibility: hidden; width: 200px; background-color: #555; color: #fff; text-align: center; border-radius: 6px; padding: 5px; position: absolute; z-index: 1; bottom: 125%; left: 50%; margin-left: -100px; opacity: 0; transition: opacity 0.3s; } .tooltip:hover .tooltiptext { visibility: visible; opacity: 1; } /* Dropdown specific styling to ensure visibility */ .template-selector { min-width: 300px; z-index: 1000; } .gr-dropdown { position: relative; } .gr-dropdown .gr-dropdown-list { max-height: 300px; overflow-y: auto; z-index: 1001; } @media (max-width: 768px) { .header-title { font-size: 2rem; } .template-card { margin: 0.25rem; padding: 1rem; } } """ default_template = "smart-voice" """Create the enhanced Gradio UI.""" with gr.Blocks(theme=my_theme, css=custom_css, title="Higgs Audio TTS") as demo: # Header with gradient background gr.HTML("""

🎙️ Higgs Audio Text-to-Speech

Transform your text into natural, expressive speech with AI

""") # Main UI section with fixed overflow with gr.Row(elem_classes=["main-content"]): with gr.Column(scale=2, elem_classes=["input-column"]): # Template selection with visual cards gr.Markdown("### 🎯 Choose Your Template") # Define available templates available_templates = list(PREDEFINED_EXAMPLES.keys()) # Use Radio instead of Dropdown for better visibility template_dropdown = gr.Radio( label="TTS Template", choices=available_templates, value=default_template, info="Select a predefined template to get started quickly", type="value" ) # Template description with enhanced styling template_description = gr.HTML( value=f'
{PREDEFINED_EXAMPLES[default_template]["description"]}
', visible=True, ) # System prompt with better styling with gr.Group(): gr.Markdown("### 🔧 System Configuration") system_prompt = gr.TextArea( label="System Prompt", placeholder="Enter system prompt to guide the model...", value=PREDEFINED_EXAMPLES[default_template]["system_prompt"], lines=3, elem_classes=["system-prompt"] ) # Input text with character counter with gr.Group(): gr.Markdown("### ✍️ Your Text") input_text = gr.TextArea( label="Input Text", placeholder="Type the text you want to convert to speech...", value=PREDEFINED_EXAMPLES[default_template]["input_text"], lines=6, elem_classes=["input-text"] ) char_count = gr.Markdown(f"Character count: {len(PREDEFINED_EXAMPLES[default_template]['input_text'])}") # Voice selection section with gr.Group(visible=False) as voice_section: gr.Markdown("### 🎭 Voice Selection") voice_preset = gr.Dropdown( label="Voice Preset", choices=list(VOICE_PRESETS.keys()), value="EMPTY", interactive=False, visible=False, elem_classes=["voice-preset"] ) with gr.Accordion( "🎤 Custom Reference Audio", open=False, visible=False ) as custom_reference_accordion: reference_audio = gr.Audio( label="Upload Reference Audio", type="filepath", elem_classes=["reference-audio"] ) reference_text = gr.TextArea( label="Reference Text (transcript of the reference audio)", placeholder="Enter the transcript of your reference audio for better voice cloning...", lines=3, elem_classes=["reference-text"] ) # Advanced parameters with better organization with gr.Accordion("⚙️ Advanced Parameters", open=False): with gr.Row(): with gr.Column(): max_completion_tokens = gr.Slider( minimum=128, maximum=4096, value=1024, step=10, label="Max Completion Tokens", info="Maximum number of tokens to generate" ) temperature = gr.Slider( minimum=0.0, maximum=1.5, value=1.0, step=0.1, label="Temperature", info="Controls randomness in generation" ) with gr.Column(): top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P", info="Nucleus sampling parameter" ) top_k = gr.Slider( minimum=-1, maximum=100, value=50, step=1, label="Top K", info="Top-k sampling parameter (-1 to disable)" ) with gr.Row(): with gr.Column(): ras_win_len = gr.Slider( minimum=0, maximum=10, value=7, step=1, label="RAS Window Length", info="Window length for repetition avoidance sampling" ) with gr.Column(): ras_win_max_num_repeat = gr.Slider( minimum=1, maximum=10, value=2, step=1, label="RAS Max Num Repeat", info="Maximum repetitions allowed in the window" ) # Stop strings with better UI gr.Markdown("#### Stop Strings") stop_strings = gr.Dataframe( label="Stop Strings", headers=["stops"], datatype=["str"], value=[[s] for s in DEFAULT_STOP_STRINGS], interactive=True, col_count=(1, "fixed"), elem_classes=["stop-strings"] ) # Generate button with enhanced styling with gr.Row(): submit_btn = gr.Button( "🚀 Generate Speech", variant="primary", scale=1, elem_classes=["generate-btn"] ) # Output column with better organization with gr.Column(scale=2): # Status and progress section with gr.Group(): gr.Markdown("### 📊 Generation Status") status_text = gr.Markdown("Ready to generate speech...", elem_classes=["status-text"]) # Model response section with gr.Group(): gr.Markdown("### 💬 Model Response") output_text = gr.TextArea( label="Generated Text Output", lines=3, interactive=False, elem_classes=["output-text"] ) # Audio output with enhanced player with gr.Group(): gr.Markdown("### 🎵 Generated Audio") output_audio = gr.Audio( label="Audio Player", interactive=False, autoplay=True, elem_classes=["audio-container"] ) with gr.Row(): stop_btn = gr.Button( "⏹️ Stop Playback", variant="secondary", elem_classes=["stop-btn"] ) download_btn = gr.Button( "💾 Download Audio", variant="secondary", elem_classes=["download-btn"], visible=False ) # Quick tips section gr.Markdown("""

💡 Quick Tips:

""") # Voice samples section with visual cards with gr.Row(visible=False) as voice_samples_section: gr.Markdown("### 🎧 Voice Samples Library") voice_samples_table = gr.Dataframe( headers=["Voice Preset", "Sample Text"], datatype=["str", "str"], value=[[preset, text] for preset, text in VOICE_PRESETS.items() if preset != "EMPTY"], interactive=False, elem_classes=["voice-samples-table"] ) sample_audio = gr.Audio( label="🔊 Preview Voice Sample", elem_classes=["sample-audio"] ) # Function to update character count def update_char_count(text): return f"Character count: {len(text)}" # Function to play voice sample when clicking on a row def play_voice_sample(evt: gr.SelectData): try: preset_names = [preset for preset in VOICE_PRESETS.keys() if preset != "EMPTY"] if evt.index[0] < len(preset_names): preset = preset_names[evt.index[0]] voice_path, _ = get_voice_preset(preset) if voice_path and os.path.exists(voice_path): return voice_path else: gr.Warning(f"Voice sample file not found for preset: {preset}") return None else: gr.Warning("Invalid voice preset selection") return None except Exception as e: logger.error(f"Error playing voice sample: {e}") gr.Error(f"Error playing voice sample: {e}") return None # Function to handle template selection def apply_template(template_name): if template_name in PREDEFINED_EXAMPLES: template = PREDEFINED_EXAMPLES[template_name] is_voice_clone = template_name == "voice-clone" voice_preset_value = "belinda" if is_voice_clone else "EMPTY" ras_win_len_value = 0 if template_name == "single-speaker-bgm" else 7 description_html = f'
{template["description"]}
' return ( template["system_prompt"], # system_prompt template["input_text"], # input_text description_html, # template_description gr.update( value=voice_preset_value, interactive=is_voice_clone, visible=is_voice_clone ), # voice_preset gr.update(visible=is_voice_clone), # custom reference accordion gr.update(visible=is_voice_clone), # voice samples section ras_win_len_value, # ras_win_len gr.update(visible=is_voice_clone), # voice_section update_char_count(template["input_text"]), # char_count ) return (gr.update(),) * 9 # Enhanced text_to_speech wrapper with status updates def text_to_speech_with_status( text, voice_preset, reference_audio, reference_text, max_completion_tokens, temperature, top_p, top_k, system_prompt, stop_strings, ras_win_len, ras_win_max_num_repeat ): # Update status yield "🔄 Initializing model...", None, None, gr.update(visible=False) # Call the actual TTS function result_text, audio_result = text_to_speech( text, voice_preset, reference_audio, reference_text, max_completion_tokens, temperature, top_p, top_k, system_prompt, stop_strings, ras_win_len, ras_win_max_num_repeat ) if audio_result: status = "✅ Speech generated successfully!" download_visible = True else: status = "❌ Failed to generate speech" download_visible = False yield status, result_text, audio_result, gr.update(visible=download_visible) # Set up event handlers # Character count update input_text.change( fn=update_char_count, inputs=[input_text], outputs=[char_count] ) # Template selection template_dropdown.change( fn=apply_template, inputs=[template_dropdown], outputs=[ system_prompt, input_text, template_description, voice_preset, custom_reference_accordion, voice_samples_section, ras_win_len, voice_section, char_count, ], ) # Voice sample preview voice_samples_table.select( fn=play_voice_sample, outputs=[sample_audio] ) # Generate button with status updates submit_btn.click( fn=text_to_speech_with_status, inputs=[ input_text, voice_preset, reference_audio, reference_text, max_completion_tokens, temperature, top_p, top_k, system_prompt, stop_strings, ras_win_len, ras_win_max_num_repeat, ], outputs=[status_text, output_text, output_audio, download_btn], api_name="generate_speech", ) # Stop button functionality stop_btn.click( fn=lambda: None, inputs=[], outputs=[output_audio], js="() => {const audio = document.querySelector('audio'); if(audio) audio.pause(); return null;}", ) # Download button functionality download_btn.click( fn=lambda x: x, inputs=[output_audio], outputs=[], js="(audio) => {if(audio) {const a = document.createElement('a'); a.href = audio.url; a.download = 'generated_speech.wav'; a.click();}}", ) return demo def main(): """Main function to parse arguments and launch the UI.""" global DEFAULT_MODEL_PATH, DEFAULT_AUDIO_TOKENIZER_PATH parser = argparse.ArgumentParser(description="Gradio UI for Text-to-Speech using HiggsAudioServeEngine") parser.add_argument( "--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device to run the model on.", ) parser.add_argument("--host", type=str, default="0.0.0.0", help="Host for the Gradio interface.") parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio interface.") args = parser.parse_args() # Initialize global variables initialize_globals() # Create and launch the UI demo = create_ui() demo.launch( server_name=args.host, server_port=args.port, share=False, show_error=True ) if __name__ == "__main__": main()