NH-Korea / app-backup3.py
ginipick's picture
Update app-backup3.py
e175e31 verified
raw
history blame
43.6 kB
import os, json, re, logging, requests, markdown, time, io
from datetime import datetime
import random
import base64
from io import BytesIO
from PIL import Image
import streamlit as st
from openai import OpenAI # OpenAI 라이브러리
from gradio_client import Client
import pandas as pd
import PyPDF2 # For handling PDF files
# ──────────────────────────────── Environment Variables / Constants ─────────────────────────
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
BRAVE_IMAGE_ENDPOINT = "https://api.search.brave.com/res/v1/images/search"
BRAVE_VIDEO_ENDPOINT = "https://api.search.brave.com/res/v1/videos/search"
BRAVE_NEWS_ENDPOINT = "https://api.search.brave.com/res/v1/news/search"
IMAGE_API_URL = "http://211.233.58.201:7896"
MAX_TOKENS = 7999
# Brave Search modes and style definitions (in English)
SEARCH_MODES = {
"comprehensive": "Comprehensive answer with multiple sources",
"academic": "Academic and research-focused results",
"news": "Latest news and current events",
"technical": "Technical and specialized information",
"educational": "Educational and learning resources"
}
RESPONSE_STYLES = {
"professional": "Professional and formal tone",
"casual": "Friendly and conversational tone",
"simple": "Simple and easy to understand",
"detailed": "Detailed and thorough explanations"
}
# Example search queries
EXAMPLE_QUERIES = {
"example1": "What are the latest developments in quantum computing?",
"example2": "How does climate change affect biodiversity in tropical rainforests?",
"example3": "What are the economic implications of artificial intelligence in the job market?"
}
# ──────────────────────────────── Logging ────────────────────────────────
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
# ──────────────────────────────── OpenAI Client ──────────────────────────
@st.cache_resource
def get_openai_client():
"""Create an OpenAI client with timeout and retry settings."""
if not OPENAI_API_KEY:
raise RuntimeError("⚠️ OPENAI_API_KEY ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.")
return OpenAI(
api_key=OPENAI_API_KEY,
timeout=60.0,
max_retries=3
)
# ──────────────────────────────── System Prompt ─────────────────────────
def get_system_prompt(mode="comprehensive", style="professional", include_search_results=True, include_uploaded_files=False) -> str:
"""
Generate a system prompt for the 'Perplexity Clone' interface based on:
- The selected search mode and style
- Guidelines for using web search results and uploaded files
"""
comprehensive_prompt = """
You are an advanced AI assistant that provides comprehensive answers with multiple sources, similar to Perplexity.
Your task is to:
1. Thoroughly analyze the user's query
2. Provide a clear, well-structured answer integrating information from multiple sources
3. Include relevant images, videos, and links in your response
4. Format your answer with proper headings, bullet points, and sections
5. Cite sources inline and provide a references section at the end
Important guidelines:
- Organize information logically with clear section headings
- Use bullet points and numbered lists for clarity
- Include specific, factual information whenever possible
- Provide balanced perspectives on controversial topics
- Display relevant statistics, data, or quotes when appropriate
- Format your response using markdown for readability
"""
mode_prompts = {
"academic": """
Your focus is on providing academic and research-focused responses:
- Prioritize peer-reviewed research and academic sources
- Include citations in a formal academic format
- Discuss methodologies and research limitations where relevant
- Present different scholarly perspectives on the topic
- Use precise, technical language appropriate for an academic audience
""",
"news": """
Your focus is on providing the latest news and current events:
- Prioritize recent news articles and current information
- Include publication dates for all news sources
- Present multiple perspectives from different news outlets
- Distinguish between facts and opinions/editorial content
- Update information with the most recent developments
""",
"technical": """
Your focus is on providing technical and specialized information:
- Use precise technical terminology appropriate to the field
- Include code snippets, formulas, or technical diagrams where relevant
- Break down complex concepts into step-by-step explanations
- Reference technical documentation, standards, and best practices
- Consider different technical approaches or methodologies
""",
"educational": """
Your focus is on providing educational and learning resources:
- Structure information in a learning-friendly progression
- Include examples, analogies, and visual explanations
- Highlight key concepts and definitions
- Suggest further learning resources at different difficulty levels
- Present information that's accessible to learners at various levels
"""
}
style_guides = {
"professional": "Use a professional, authoritative voice. Clearly explain technical terms and present data systematically.",
"casual": "Use a relaxed, conversational style with a friendly tone. Include relatable examples and occasionally use informal expressions.",
"simple": "Use straightforward language and avoid jargon. Keep sentences and paragraphs short. Explain concepts as if to someone with no background in the subject.",
"detailed": "Provide thorough explanations with comprehensive background information. Explore nuances and edge cases. Present multiple perspectives and detailed analysis."
}
search_guide = """
Guidelines for Using Search Results:
- Include source links directly in your response using markdown: [Source Name](URL)
- For each major claim or piece of information, indicate its source
- If sources conflict, explain the different perspectives and their reliability
- Include relevant images by writing: ![Image description](image_url)
- Include relevant video links when appropriate by writing: [Video: Title](video_url)
- Format search information into a cohesive, well-structured response
- Include a "References" section at the end listing all major sources with links
"""
upload_guide = """
Guidelines for Using Uploaded Files:
- Treat the uploaded files as primary sources for your response
- Extract and highlight key information from files that directly addresses the query
- Quote relevant passages and cite the specific file
- For numerical data in CSV files, consider creating summary statements
- For PDF content, reference specific sections or pages
- Integrate file information seamlessly with web search results
- When information conflicts, prioritize file content over general web results
"""
# Base prompt
if mode == "comprehensive":
final_prompt = comprehensive_prompt
else:
final_prompt = comprehensive_prompt + "\n" + mode_prompts.get(mode, "")
# Style
if style in style_guides:
final_prompt += f"\n\nTone and Style: {style_guides[style]}"
if include_search_results:
final_prompt += f"\n\n{search_guide}"
if include_uploaded_files:
final_prompt += f"\n\n{upload_guide}"
final_prompt += """
\n\nAdditional Formatting Requirements:
- Use markdown headings (## and ###) to organize your response
- Use bold text (**text**) for emphasis on important points
- Include a "Related Questions" section at the end with 3-5 follow-up questions
- Format your response with proper spacing and paragraph breaks
- Make all links clickable by using proper markdown format: [text](url)
"""
return final_prompt
# ──────────────────────────────── Brave Search API ────────────────────────
@st.cache_data(ttl=3600)
def brave_search(query: str, count: int = 20):
if not BRAVE_KEY:
raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
logging.info(f"Brave search result data structure: {list(data.keys())}")
raw = data.get("web", {}).get("results") or data.get("results", [])
if not raw:
logging.warning(f"No Brave search results found. Response: {data}")
raise ValueError("No search results found.")
arts = []
for i, res in enumerate(raw[:count], 1):
url = res.get("url", res.get("link", ""))
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
arts.append({
"index": i,
"title": res.get("title", "No title"),
"link": url,
"snippet": res.get("description", res.get("text", "No snippet")),
"displayed_link": host
})
logging.info(f"Brave search success: {len(arts)} results")
return arts
except Exception as e:
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
# μ—¬κΈ°μ„œ λŒ€κΈ° μ‹œκ°„ 늘림 (2초 β†’ 5초)
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_image_search(query: str, count: int = 10):
if not BRAVE_KEY:
raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count),"search_lang": "en","country": "us","spellcheck": "1"}
for attempt in range(3):
try:
r = requests.get(BRAVE_IMAGE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, img in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": img.get("title", "Image"),
"image_url": img.get("image", {}).get("url", ""),
"source_url": img.get("source", ""),
"width": img.get("image", {}).get("width", 0),
"height": img.get("image", {}).get("height", 0)
})
logging.info(f"Brave image search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave image search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_video_search(query: str, count: int = 5):
if not BRAVE_KEY:
raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_VIDEO_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, vid in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": vid.get("title", "Video"),
"video_url": vid.get("url", ""),
"thumbnail_url": vid.get("thumbnail", {}).get("src", ""),
"source": vid.get("provider", {}).get("name", "Unknown source")
})
logging.info(f"Brave video search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave video search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_news_search(query: str, count: int = 5):
if not BRAVE_KEY:
raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_NEWS_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, news in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": news.get("title", "News article"),
"url": news.get("url", ""),
"description": news.get("description", ""),
"source": news.get("source", "Unknown source"),
"date": news.get("age", "Unknown date")
})
logging.info(f"Brave news search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave news search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
def mock_results(query: str) -> str:
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return (f"# Fallback Search Content (Generated: {ts})\n\n"
f"The search API request failed or returned no results for '{query}'. "
f"Please generate a response based on any pre-existing knowledge.\n\n"
f"Consider these points:\n\n"
f"- Basic concepts and importance of {query}\n"
f"- Commonly known related statistics or trends\n"
f"- Typical expert opinions on this subject\n"
f"- Questions that readers might have\n\n"
f"Note: This is fallback guidance, not real-time data.\n\n")
def do_web_search(query: str) -> str:
try:
arts = brave_search(query, 20)
if not arts:
logging.warning("No search results, using fallback content")
return mock_results(query)
images = brave_image_search(query, 5)
videos = brave_video_search(query, 2)
news = brave_news_search(query, 3)
result = "# Web Search Results\nUse these results to provide a comprehensive answer with multiple sources.\n\n"
result += "## Web Results\n\n"
for a in arts[:10]:
result += f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
result += f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
if images:
result += "## Image Results\n\n"
for img in images:
if img.get('image_url'):
result += f"![{img['title']}]({img['image_url']})\n\n"
result += f"**Source**: [{img.get('source_url', 'Image source')}]({img.get('source_url', '#')})\n\n"
if videos:
result += "## Video Results\n\n"
for vid in videos:
result += f"### {vid['title']}\n\n"
if vid.get('thumbnail_url'):
result += f"![Thumbnail]({vid['thumbnail_url']})\n\n"
result += f"**Watch**: [{vid['source']}]({vid['video_url']})\n\n"
if news:
result += "## News Results\n\n"
for n in news:
result += f"### {n['title']}\n\n{n['description']}\n\n"
result += f"**Source**: [{n['source']}]({n['url']}) - {n['date']}\n\n---\n"
return result
except Exception as e:
logging.error(f"Web search process failed: {str(e)}")
return mock_results(query)
# ──────────────────────────────── File Upload Handling ─────────────────────
def process_text_file(file):
try:
content = file.read()
file.seek(0)
text = content.decode('utf-8', errors='ignore')
if len(text) > 10000:
text = text[:9700] + "...(truncated)..."
result = f"## Text File: {file.name}\n\n" + text
return result
except Exception as e:
logging.error(f"Error processing text file: {str(e)}")
return f"Error processing text file: {str(e)}"
def process_csv_file(file):
try:
content = file.read()
file.seek(0)
df = pd.read_csv(io.BytesIO(content))
result = f"## CSV File: {file.name}\n\n"
result += f"- Rows: {len(df)}\n"
result += f"- Columns: {len(df.columns)}\n"
result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"
result += "### Data Preview\n\n"
preview_df = df.head(10)
try:
markdown_table = preview_df.to_markdown(index=False)
if markdown_table:
result += markdown_table + "\n\n"
else:
result += "Unable to display CSV data.\n\n"
except Exception as e:
logging.error(f"Markdown table conversion error: {e}")
result += "Displaying data as text:\n\n" + str(preview_df) + "\n\n"
num_cols = df.select_dtypes(include=['number']).columns
if len(num_cols) > 0:
result += "### Basic Statistical Information\n\n"
try:
stats_df = df[num_cols].describe().round(2)
stats_markdown = stats_df.to_markdown()
if stats_markdown:
result += stats_markdown + "\n\n"
else:
result += "Unable to display statistical information.\n\n"
except Exception as e:
logging.error(f"Statistical info conversion error: {e}")
result += "Unable to generate statistical information.\n\n"
return result
except Exception as e:
logging.error(f"CSV file processing error: {str(e)}")
return f"Error processing CSV file: {str(e)}"
def process_pdf_file(file):
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
result = f"## PDF File: {file.name}\n\n- Total pages: {len(reader.pages)}\n\n"
max_pages = min(5, len(reader.pages))
all_text = ""
for i in range(max_pages):
try:
page = reader.pages[i]
page_text = page.extract_text()
current_page_text = f"### Page {i+1}\n\n"
if page_text and len(page_text.strip()) > 0:
if len(page_text) > 1500:
current_page_text += page_text[:1500] + "...(truncated)...\n\n"
else:
current_page_text += page_text + "\n\n"
else:
current_page_text += "(No text could be extracted)\n\n"
all_text += current_page_text
if len(all_text) > 8000:
all_text += "...(truncating remaining pages)...\n\n"
break
except Exception as page_err:
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"
if len(reader.pages) > max_pages:
all_text += f"\nNote: Only the first {max_pages} pages are shown.\n\n"
result += "### PDF Content\n\n" + all_text
return result
except Exception as e:
logging.error(f"PDF file processing error: {str(e)}")
return f"## PDF File: {file.name}\n\nError: {str(e)}\n\nCannot process."
def process_uploaded_files(files):
if not files:
return None
result = "# Uploaded File Contents\n\nBelow is the content from the files provided by the user.\n\n"
for file in files:
try:
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
result += process_text_file(file) + "\n\n---\n\n"
elif ext == 'csv':
result += process_csv_file(file) + "\n\n---\n\n"
elif ext == 'pdf':
result += process_pdf_file(file) + "\n\n---\n\n"
else:
result += f"### Unsupported File: {file.name}\n\n---\n\n"
except Exception as e:
logging.error(f"File processing error {file.name}: {e}")
result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"
return result
# ──────────────────────────────── Image & Utility ─────────────────────────
def load_and_show_image(img_url: str, caption: str = "Image"):
"""
1) User-Agentλ₯Ό λ„£μ–΄ hotlink λ°©μ–΄ 우회
2) λ‹€μš΄λ‘œλ“œ ν›„ ν‘œμ‹œ
"""
headers = {
"User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
" AppleWebKit/537.36 (KHTML, like Gecko)"
" Chrome/98.0.4758.102 Safari/537.36")
}
try:
response = requests.get(img_url, headers=headers, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
st.image(image, caption=caption, use_container_width=True)
except Exception as e:
st.warning(f"이미지 λ‘œλ”© μ‹€νŒ¨: {e}")
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
if not prompt:
return None, "Insufficient prompt"
try:
res = Client(IMAGE_API_URL).predict(
prompt=prompt, width=w, height=h, guidance=g,
inference_steps=steps, seed=seed,
do_img2img=False, init_image=None,
image2image_strength=0.8, resize_img=True,
api_name="/generate_image"
)
return res[0], f"Seed: {res[1]}"
except Exception as e:
logging.error(e)
return None, str(e)
def extract_image_prompt(response_text: str, topic: str):
client = get_openai_client()
try:
response = client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
{"role": "user", "content": f"Topic: {topic}\n\n---\n{response_text}\n\n---"}
],
temperature=1,
max_tokens=80,
top_p=1
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"OpenAI image prompt generation error: {e}")
return f"A professional photo related to {topic}, high quality"
def md_to_html(md: str, title="Perplexity Clone Response"):
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
def keywords(text: str, top=5):
cleaned = re.sub(r"[^κ°€-힣a-zA-Z0-9\s]", "", text)
return " ".join(cleaned.split()[:top])
# ──────────────────────────────── Streamlit UI ────────────────────────────
def perplexity_app():
st.title("Perplexity Clone AI Assistant")
if "ai_model" not in st.session_state:
st.session_state.ai_model = "gpt-4.1-mini"
if "messages" not in st.session_state:
st.session_state.messages = []
if "auto_save" not in st.session_state:
st.session_state.auto_save = True
if "generate_image" not in st.session_state:
st.session_state.generate_image = False
if "web_search_enabled" not in st.session_state:
st.session_state.web_search_enabled = True
if "search_mode" not in st.session_state:
st.session_state.search_mode = "comprehensive"
if "response_style" not in st.session_state:
st.session_state.response_style = "professional"
sb = st.sidebar
sb.title("Search Settings")
sb.subheader("Response Configuration")
sb.selectbox(
"Search Mode",
options=list(SEARCH_MODES.keys()),
format_func=lambda x: SEARCH_MODES[x],
key="search_mode"
)
sb.selectbox(
"Response Style",
options=list(RESPONSE_STYLES.keys()),
format_func=lambda x: RESPONSE_STYLES[x],
key="response_style"
)
# Example queries
sb.subheader("Example Queries")
c1, c2, c3 = sb.columns(3)
if c1.button("Quantum Computing", key="ex1"):
process_example(EXAMPLE_QUERIES["example1"])
if c2.button("Climate Change", key="ex2"):
process_example(EXAMPLE_QUERIES["example2"])
if c3.button("AI Economics", key="ex3"):
process_example(EXAMPLE_QUERIES["example3"])
sb.subheader("Other Settings")
sb.toggle("Auto Save", key="auto_save")
sb.toggle("Auto Image Generation", key="generate_image")
web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
st.session_state.web_search_enabled = web_search_enabled
if web_search_enabled:
st.sidebar.info("βœ… Web search results will be integrated into the response.")
# Download the latest response
latest_response = next(
(m["content"] for m in reversed(st.session_state.messages)
if m["role"] == "assistant" and m["content"].strip()),
None
)
if latest_response:
title_match = re.search(r"# (.*?)(\n|$)", latest_response)
if title_match:
title = title_match.group(1).strip()
else:
first_line = latest_response.split('\n', 1)[0].strip()
title = first_line[:40] + "..." if len(first_line) > 40 else first_line
sb.subheader("Download Latest Response")
d1, d2 = sb.columns(2)
d1.download_button("Download as Markdown", latest_response,
file_name=f"{title}.md", mime="text/markdown")
d2.download_button("Download as HTML", md_to_html(latest_response, title),
file_name=f"{title}.html", mime="text/html")
# JSON conversation record upload
up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
if up:
try:
st.session_state.messages = json.load(up)
sb.success("Conversation history loaded successfully")
except Exception as e:
sb.error(f"Failed to load: {e}")
# JSON conversation record download
if sb.button("Download Conversation as JSON"):
sb.download_button(
"Save",
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
file_name="conversation_history.json",
mime="application/json"
)
# File Upload
st.subheader("Upload Files")
uploaded_files = st.file_uploader(
"Upload files to be used as reference (txt, csv, pdf)",
type=["txt", "csv", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
file_count = len(uploaded_files)
st.success(f"{file_count} files uploaded. They will be used as sources for your query.")
with st.expander("Preview Uploaded Files", expanded=False):
for idx, file in enumerate(uploaded_files):
st.write(f"**File Name:** {file.name}")
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
preview = file.read(1000).decode('utf-8', errors='ignore')
file.seek(0)
st.text_area(
f"Preview of {file.name}",
preview + ("..." if len(preview) >= 1000 else ""),
height=150
)
elif ext == 'csv':
try:
df = pd.read_csv(file)
file.seek(0)
st.write("CSV Preview (up to 5 rows)")
st.dataframe(df.head(5))
except Exception as e:
st.error(f"CSV preview failed: {e}")
elif ext == 'pdf':
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
pc = len(reader.pages)
st.write(f"PDF File: {pc} pages")
if pc > 0:
try:
page_text = reader.pages[0].extract_text()
preview = page_text[:500] if page_text else "(No text extracted)"
st.text_area("Preview of the first page", preview + "...", height=150)
except:
st.warning("Failed to extract text from the first page")
except Exception as e:
st.error(f"PDF preview failed: {e}")
if idx < file_count - 1:
st.divider()
# Display existing messages
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"], unsafe_allow_html=True)
# Images
if "images" in m and m["images"]:
st.subheader("Related Images")
cols = st.columns(min(3, len(m["images"])))
for i, img_data in enumerate(m["images"]):
col_idx = i % len(cols)
with cols[col_idx]:
try:
img_url = img_data.get('url', '')
caption = img_data.get('title', 'Related image')
if img_url:
load_and_show_image(img_url, caption=caption)
if img_data.get('source'):
st.markdown(f"[Source]({img_data['source']})")
except Exception as img_err:
st.warning(f"Could not display image: {img_err}")
# Videos
if "videos" in m and m["videos"]:
st.subheader("Related Videos")
for video in m["videos"]:
video_title = video.get('title', 'Related video')
video_url = video.get('url', '')
thumbnail = video.get('thumbnail', '')
if thumbnail:
col1, col2 = st.columns([1, 3])
with col1:
try:
load_and_show_image(thumbnail, caption="Video Thumbnail")
except:
st.write("🎬")
with col2:
st.markdown(f"**[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
else:
st.markdown(f"🎬 **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
# User input
query = st.chat_input("Enter your query or question here.")
if query:
process_input(query, uploaded_files)
sb.markdown("---")
sb.markdown("Created by [https://ginigen.com](https://ginigen.com) | [YouTube Channel](https://www.youtube.com/@ginipickaistudio)")
def process_example(topic):
process_input(topic, [])
def process_input(query: str, uploaded_files):
if not any(m["role"] == "user" and m["content"] == query for m in st.session_state.messages):
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.markdown(query)
with st.chat_message("assistant"):
placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
use_web_search = st.session_state.web_search_enabled
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
try:
status = st.status("Preparing to answer your query...")
status.update(label="Initializing client...")
client = get_openai_client()
search_content = None
image_results = []
video_results = []
news_results = []
if use_web_search:
status.update(label="Performing web search...")
with st.spinner("Searching the web..."):
search_content = do_web_search(keywords(query, top=5))
try:
status.update(label="Finding images and videos...")
image_results = brave_image_search(query, 5)
video_results = brave_video_search(query, 2)
news_results = brave_news_search(query, 3)
except Exception as search_err:
logging.error(f"Media search error: {search_err}")
file_content = None
if has_uploaded_files:
status.update(label="Processing uploaded files...")
with st.spinner("Analyzing files..."):
file_content = process_uploaded_files(uploaded_files)
valid_images = []
for img in image_results:
url = img.get('image_url')
if url and url.startswith('http'):
valid_images.append({
'url': url,
'title': img.get('title', f"Related to: {query}"),
'source': img.get('source_url', '')
})
valid_videos = []
for vid in video_results:
url = vid.get('video_url')
if url and url.startswith('http'):
valid_videos.append({
'url': url,
'title': vid.get('title', 'Video'),
'thumbnail': vid.get('thumbnail_url', ''),
'source': vid.get('source', 'Video source')
})
status.update(label="Preparing comprehensive answer...")
sys_prompt = get_system_prompt(
mode=st.session_state.search_mode,
style=st.session_state.response_style,
include_search_results=use_web_search,
include_uploaded_files=has_uploaded_files
)
api_messages = [
{"role": "system", "content": sys_prompt}
]
user_content = query
if search_content:
user_content += "\n\n" + search_content
if file_content:
user_content += "\n\n" + file_content
if valid_images:
user_content += "\n\n# Available Images\n"
for i, img in enumerate(valid_images):
user_content += f"\n{i+1}. ![{img['title']}]({img['url']})\n"
if img['source']:
user_content += f" Source: {img['source']}\n"
if valid_videos:
user_content += "\n\n# Available Videos\n"
for i, vid in enumerate(valid_videos):
user_content += f"\n{i+1}. **{vid['title']}** - [{vid['source']}]({vid['url']})\n"
api_messages.append({"role": "user", "content": user_content})
try:
stream = client.chat.completions.create(
model="gpt-4.1-mini",
messages=api_messages,
temperature=1,
max_tokens=MAX_TOKENS,
top_p=1,
stream=True
)
for chunk in stream:
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
content_delta = chunk.choices[0].delta.content
full_response += content_delta
message_placeholder.markdown(full_response + "β–Œ", unsafe_allow_html=True)
message_placeholder.markdown(full_response, unsafe_allow_html=True)
if valid_images:
st.subheader("Related Images")
image_cols = st.columns(min(3, len(valid_images)))
for i, img_data in enumerate(valid_images):
col_idx = i % len(image_cols)
try:
with image_cols[col_idx]:
img_url = img_data['url']
caption = img_data['title']
load_and_show_image(img_url, caption=caption)
if img_data.get('source'):
st.markdown(f"[Source]({img_data['source']})")
except Exception as img_err:
logging.warning(f"Error displaying image: {img_err}")
if valid_videos:
st.subheader("Related Videos")
for video in valid_videos:
video_title = video.get('title', 'Related video')
video_url = video.get('url', '')
thumbnail = video.get('thumbnail', '')
if thumbnail:
try:
col1, col2 = st.columns([1, 3])
with col1:
try:
load_and_show_image(thumbnail, caption="Video Thumbnail")
except:
st.write("🎬")
with col2:
st.markdown(f"**[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
except Exception as vid_err:
st.markdown(f"🎬 **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
else:
st.markdown(f"🎬 **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
status.update(label="Response completed!", state="complete")
st.session_state.messages.append({
"role": "assistant",
"content": full_response,
"images": valid_images,
"videos": valid_videos
})
except Exception as api_error:
error_message = str(api_error)
logging.error(f"API error: {error_message}")
status.update(label=f"Error: {error_message}", state="error")
raise Exception(f"Response generation error: {error_message}")
if st.session_state.generate_image and full_response:
with st.spinner("Generating custom image..."):
try:
ip = extract_image_prompt(full_response, query)
img, cap = generate_image(ip)
if img:
st.subheader("AI-Generated Image")
st.image(img, caption=cap, use_container_width=True)
except Exception as img_error:
logging.error(f"Image generation error: {str(img_error)}")
st.warning("Custom image generation failed.")
if full_response:
st.subheader("Download This Response")
c1, c2 = st.columns(2)
c1.download_button(
"Markdown",
data=full_response,
file_name=f"{query[:30]}.md",
mime="text/markdown"
)
c2.download_button(
"HTML",
data=md_to_html(full_response, query[:30]),
file_name=f"{query[:30]}.html",
mime="text/html"
)
if st.session_state.auto_save and st.session_state.messages:
try:
fn = f"conversation_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
with open(fn, "w", encoding="utf-8") as fp:
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
except Exception as e:
logging.error(f"Auto-save failed: {e}")
except Exception as e:
error_message = str(e)
placeholder.error(f"An error occurred: {error_message}")
logging.error(f"Process input error: {error_message}")
ans = f"An error occurred while processing your request: {error_message}"
st.session_state.messages.append({"role": "assistant", "content": ans})
# ──────────────────────────────── main ────────────────────────────────────
def main():
st.write("==== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
perplexity_app()
if __name__ == "__main__":
main()