File size: 4,985 Bytes
a0f19e1 e8a1252 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 c04c6e5 6bd7459 a914df4 a0f19e1 a914df4 a0f19e1 6bd7459 a0f19e1 a914df4 a0f19e1 a914df4 a0f19e1 a914df4 6bd7459 a914df4 6bd7459 a914df4 a0f19e1 a914df4 6bd7459 c1bd34f 6bd7459 c04c6e5 a0f19e1 6bd7459 f33b0ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import os
import gradio as gr
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
import PyPDF2
from langchain.prompts import PromptTemplate
# Set up API keys
groq_api_key = os.environ.get('GROQ_API_KEY')
# Set up LLM
llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=groq_api_key)
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def chunk_text(text):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=4000,
chunk_overlap=400,
length_function=len
)
chunks = text_splitter.split_text(text)
return [Document(page_content=chunk) for chunk in chunks]
def summarize_chunks(chunks, conciseness):
# Adjust the prompts based on the conciseness level
map_prompt_template = f"""Write a {'very concise' if conciseness > 0.7 else 'detailed'} summary of the following text, focusing on the {'most crucial' if conciseness > 0.7 else 'key'} points:
"{{text}}"
{'CONCISE' if conciseness > 0.7 else 'DETAILED'} SUMMARY:"""
combine_prompt_template = f"""Write a {'highly condensed' if conciseness > 0.7 else 'comprehensive'} summary of the following text, capturing the {'essential' if conciseness > 0.7 else 'key'} points and main ideas:
"{{text}}"
{'CONDENSED' if conciseness > 0.7 else 'COMPREHENSIVE'} SUMMARY:"""
map_prompt = PromptTemplate(template=map_prompt_template, input_variables=["text"])
combine_prompt = PromptTemplate(template=combine_prompt_template, input_variables=["text"])
# Adjust the chain type based on the document length and conciseness
total_length = sum(len(chunk.page_content) for chunk in chunks)
if total_length < 10000 or conciseness > 0.8:
chain = load_summarize_chain(
llm,
chain_type="stuff",
prompt=combine_prompt
)
else:
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
map_prompt=map_prompt,
combine_prompt=combine_prompt,
verbose=True
)
summary = chain.run(chunks)
return summary
def summarize_content(pdf_file, text_input, conciseness):
if pdf_file is None and not text_input:
return "Please upload a PDF file or enter text to summarize."
if pdf_file is not None:
# Extract text from PDF
text = extract_text_from_pdf(pdf_file)
else:
# Use the input text
text = text_input
# Chunk the text
chunks = chunk_text(text)
# Summarize chunks with conciseness level
final_summary = summarize_chunks(chunks, conciseness)
return final_summary
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown(
"""
<h1 style="text-align: center;">PDF And Text Summarizer</h1>
<h3 style="text-align: center;">Advanced PDF and Text Summarization with Conciseness Control - Upload your PDF document or enter text directly, adjust the conciseness level, and let AI generate a summary.</h3>
"""
)
with gr.Row():
with gr.Column(scale=1):
input_pdf = gr.File(label="Upload PDF (optional)", file_types=[".pdf"])
input_text = gr.Textbox(label="Or enter text here", lines=5, placeholder="Paste or type your text here...")
conciseness_slider = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Conciseness Level")
submit_btn = gr.Button("Generate Summary", variant="primary")
with gr.Column(scale=2):
output = gr.Textbox(label="Generated Summary", lines=10)
gr.Markdown(
"""
### How it works
1. Upload a PDF file or enter text directly
2. Adjust the conciseness level:
- 0 (Most detailed) to 1 (Most concise)
3. Click "Generate Summary"
4. Wait for the AI to process and summarize your content
5. Review the generated summary
*Powered by LLAMA 3.1 8B model and LangChain*
"""
)
gr.HTML(
"""
<footer style="text-align: center;">
<p>To learn more about this app, visit my <a href="https://medium.com/@girishwangikar/advancing-document-summarization-6f6a24f2fbb0" target="_blank">blog</a>.<br>
If you enjoyed the functionality of the app, please leave a like!<br>
Check out more on <a href="https://www.linkedin.com/in/girish-wangikar/" target="_blank">LinkedIn</a> |
<a href="https://girishwangikar.github.io/Girish_Wangikar_Portfolio.github.io/" target="_blank">Portfolio</a></p>
</footer>
"""
)
submit_btn.click(summarize_content, inputs=[input_pdf, input_text, conciseness_slider], outputs=output)
iface.launch()
|