Spaces:
Running
Running
File size: 22,752 Bytes
bf48cd0 26c90a0 f26ba3a fc30b48 bf48cd0 eba6bc8 5f972c1 eba6bc8 5f972c1 6692a78 11406fe f704379 11406fe cdad176 b0e62d9 8336be3 f1f8e2a eba6bc8 fc30b48 eba6bc8 fc30b48 eba6bc8 26c90a0 18e4b7b fc30b48 b0e62d9 18e4b7b fc30b48 18e4b7b 5f972c1 18e4b7b fc30b48 18e4b7b cdad176 18e4b7b fc30b48 26c90a0 18e4b7b cdad176 fc30b48 b0e62d9 fc30b48 1e90d4c fc30b48 f1f8e2a fc30b48 79e7ab9 fc30b48 1fae977 eba6bc8 fc30b48 eba6bc8 fc30b48 18e4b7b fc30b48 5f972c1 fc30b48 18e4b7b fc30b48 18e4b7b eba6bc8 fc30b48 5f972c1 fc30b48 eba6bc8 fc30b48 cdad176 fc30b48 18e4b7b fc30b48 18e4b7b fc30b48 5f972c1 fc30b48 18e4b7b fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 18e4b7b fc30b48 18e4b7b fc30b48 5f972c1 fc30b48 393275c fc30b48 5f972c1 b61c3eb bff2060 b61c3eb bff2060 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 26c90a0 fc30b48 c6e67aa fc30b48 c6e67aa fc30b48 b0e62d9 fc30b48 b0e62d9 fc30b48 b0e62d9 5f972c1 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 b0e62d9 fc30b48 b0e62d9 fc30b48 b0e62d9 fc30b48 bf5974c fc30b48 b0e62d9 fc30b48 b0e62d9 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 b0e62d9 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 5f972c1 fc30b48 b0e62d9 fc30b48 11406fe 96a2f23 fc30b48 a80ee2c e20292b 970446b a80ee2c e20292b fc30b48 09d712c f704379 fc30b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import gradio as gr
import torch
import soundfile as sf
import edge_tts
import asyncio
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from moviepy.editor import (
VideoFileClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips,
CompositeAudioClip,
AudioClip,
TextClip,
CompositeVideoClip,
VideoClip
)
import numpy as np
import json
import logging
import os
import requests
import re
import math
import tempfile
import shutil
import uuid
import threading
import time
from datetime import datetime, timedelta
# ------------------- Configuración de Timeout -------------------
os.environ["GRADIO_SERVER_TIMEOUT"] = "3800" # 30 minutos en segundos
# ------------------- Configuración & Globals -------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
if not PEXELS_API_KEY:
logger.warning("PEXELS_API_KEY no definido. Los videos no funcionarán.")
tokenizer, gpt2_model, kw_model = None, None, None
RESULTS_DIR = "video_results"
os.makedirs(RESULTS_DIR, exist_ok=True)
TASKS = {}
# ------------------- Motor Edge TTS -------------------
class EdgeTTSEngine:
def __init__(self, voice="es-ES-AlvaroNeural"):
self.voice = voice
logger.info(f"Inicializando Edge TTS con voz: {voice}")
async def _synthesize_async(self, text, output_path):
"""Sintetiza texto a voz usando Edge TTS de forma asíncrona"""
try:
communicate = edge_tts.Communicate(text, self.voice)
await communicate.save(output_path)
return True
except Exception as e:
logger.error(f"Error en Edge TTS: {e}")
return False
def synthesize(self, text, output_path):
"""Sintetiza texto a voz (wrapper síncrono)"""
try:
# Ejecutar la función async en un nuevo loop
return asyncio.run(self._synthesize_async(text, output_path))
except Exception as e:
logger.error(f"Error al sintetizar con Edge TTS: {e}")
return False
# Instancia global del motor TTS
tts_engine = EdgeTTSEngine()
# ------------------- Carga Perezosa de Modelos -------------------
def get_tokenizer():
global tokenizer
if tokenizer is None:
logger.info("Cargando tokenizer GPT2 español...")
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_gpt2_model():
global gpt2_model
if gpt2_model is None:
logger.info("Cargando modelo GPT-2 español...")
gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval()
return gpt2_model
def get_kw_model():
global kw_model
if kw_model is None:
logger.info("Cargando modelo KeyBERT multilingüe...")
kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2")
return kw_model
# ------------------- Funciones del Pipeline -------------------
def update_task_progress(task_id, message):
if task_id in TASKS:
TASKS[task_id]['progress_log'] = message
logger.info(f"[{task_id}] {message}")
def gpt2_script(prompt: str) -> str:
"""Genera un guión usando GPT-2"""
try:
local_tokenizer = get_tokenizer()
local_gpt2_model = get_gpt2_model()
instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
outputs = local_gpt2_model.generate(
**inputs,
max_length=160 + inputs["input_ids"].shape[1],
do_sample=True,
top_p=0.9,
top_k=40,
temperature=0.7,
no_repeat_ngram_size=3,
pad_token_id=local_tokenizer.pad_token_id,
eos_token_id=local_tokenizer.eos_token_id,
)
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
generated = text.split("sobre:")[-1].strip()
return generated if generated else prompt
except Exception as e:
logger.error(f"Error generando guión: {e}")
return f"Hoy hablaremos sobre {prompt}. Este es un tema fascinante que merece nuestra atención."
def generate_tts_audio(text: str, output_path: str) -> bool:
"""Genera audio usando Edge TTS"""
try:
logger.info("Generando audio con Edge TTS...")
success = tts_engine.synthesize(text, output_path)
if success and os.path.exists(output_path) and os.path.getsize(output_path) > 0:
logger.info(f"Audio generado exitosamente: {output_path}")
return True
else:
logger.error("El archivo de audio no se generó correctamente")
return False
except Exception as e:
logger.error(f"Error generando TTS: {e}")
return False
def extract_keywords(text: str) -> list[str]:
"""Extrae palabras clave del texto para búsqueda de videos"""
try:
local_kw_model = get_kw_model()
clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower())
kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5)
keywords = [k.replace(" ", "+") for k, _ in kws if k]
return keywords if keywords else ["mystery", "conspiracy", "alien", "UFO", "secret", "cover-up", "illusion", "paranoia",
"secret society", "lie", "simulation", "matrix", "terror", "darkness", "shadow", "enigma",
"urban legend", "unknown", "hidden", "mistrust", "experiment", "government", "control",
"surveillance", "propaganda", "deception", "whistleblower", "anomaly", "extraterrestrial",
"shadow government", "cabal", "deep state", "new world order", "mind control", "brainwashing",
"disinformation", "false flag", "assassin", "black ops", "anomaly", "men in black", "abduction",
"hybrid", "ancient aliens", "hollow earth", "simulation theory", "alternate reality", "predictive programming",
"symbolism", "occult", "eerie", "haunting", "unexplained", "forbidden knowledge", "redacted", "conspiracy theorist"]
except Exception as e:
logger.error(f"Error extrayendo keywords: {e}")
return ["mystery", "conspiracy", "alien", "UFO", "secret", "cover-up", "illusion", "paranoia",
"secret society", "lie", "simulation", "matrix", "terror", "darkness", "shadow", "enigma",
"urban legend", "unknown", "hidden", "mistrust", "experiment", "government", "control",
"surveillance", "propaganda", "deception", "whistleblower", "anomaly", "extraterrestrial",
"shadow government", "cabal", "deep state", "new world order", "mind control", "brainwashing",
"disinformation", "false flag", "assassin", "black ops", "anomaly", "men in black", "abduction",
"hybrid", "ancient aliens", "hollow earth", "simulation theory", "alternate reality", "predictive programming",
"symbolism", "occult", "eerie", "haunting", "unexplained", "forbidden knowledge", "redacted", "conspiracy theorist"]
def search_pexels_videos(query: str, count: int = 3) -> list[dict]:
"""Busca videos en Pexels"""
if not PEXELS_API_KEY:
return []
try:
response = requests.get(
"https://api.pexels.com/videos/search",
headers={"Authorization": PEXELS_API_KEY},
params={"query": query, "per_page": count, "orientation": "landscape"},
timeout=20
)
response.raise_for_status()
return response.json().get("videos", [])
except Exception as e:
logger.error(f"Error buscando videos en Pexels: {e}")
return []
def download_video(url: str, folder: str) -> str | None:
"""Descarga un video desde URL"""
try:
filename = f"{uuid.uuid4().hex}.mp4"
filepath = os.path.join(folder, filename)
with requests.get(url, stream=True, timeout=60) as response:
response.raise_for_status()
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=1024*1024):
f.write(chunk)
if os.path.exists(filepath) and os.path.getsize(filepath) > 1000:
return filepath
else:
logger.error(f"Archivo descargado inválido: {filepath}")
return None
except Exception as e:
logger.error(f"Error descargando video {url}: {e}")
return None
def create_subtitle_clips(script: str, video_width: int, video_height: int, duration: float):
"""Crea clips de subtítulos"""
try:
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
if not sentences:
return []
total_words = sum(len(s.split()) for s in sentences) or 1
time_per_word = duration / total_words
clips = []
current_time = 0.0
for sentence in sentences:
num_words = len(sentence.split())
sentence_duration = num_words * time_per_word
if sentence_duration < 0.5:
continue
txt_clip = (
TextClip(
sentence,
fontsize=max(20, int(video_height * 0.05)),
color="white",
stroke_color="black",
stroke_width=2,
method="caption",
size=(int(video_width * 0.9), None),
font="Arial-Bold"
)
.set_start(current_time)
.set_duration(sentence_duration)
.set_position(("center", "bottom"))
)
clips.append(txt_clip)
current_time += sentence_duration
return clips
except Exception as e:
logger.error(f"Error creando subtítulos: {e}")
return []
def loop_audio_to_duration(audio_clip: AudioFileClip, target_duration: float) -> AudioFileClip:
"""Hace loop del audio hasta alcanzar la duración objetivo"""
try:
if audio_clip.duration >= target_duration:
return audio_clip.subclip(0, target_duration)
loops_needed = math.ceil(target_duration / audio_clip.duration)
looped_audio = concatenate_audioclips([audio_clip] * loops_needed)
return looped_audio.subclip(0, target_duration)
except Exception as e:
logger.error(f"Error haciendo loop del audio: {e}")
return audio_clip
def create_video(script_text: str, generate_script: bool, music_path: str | None, task_id: str) -> str:
"""Función principal para crear el video"""
temp_dir = tempfile.mkdtemp()
try:
# Paso 1: Generar o usar guión
update_task_progress(task_id, "Paso 1/7: Preparando guión...")
if generate_script:
script = gpt2_script(script_text)
else:
script = script_text.strip()
if not script:
raise ValueError("El guión está vacío")
# Paso 2: Generar audio TTS
update_task_progress(task_id, "Paso 2/7: Generando audio con Edge TTS...")
audio_path = os.path.join(temp_dir, "voice.wav")
if not generate_tts_audio(script, audio_path):
raise RuntimeError("Error generando el audio TTS")
voice_clip = AudioFileClip(audio_path)
video_duration = voice_clip.duration
if video_duration < 1:
raise ValueError("El audio generado es demasiado corto")
# Paso 3: Buscar y descargar videos
update_task_progress(task_id, "Paso 3/7: Buscando videos en Pexels...")
video_paths = []
keywords = extract_keywords(script)
for i, keyword in enumerate(keywords[:3]): # Límite de 3 keywords
update_task_progress(task_id, f"Paso 3/7: Buscando videos para '{keyword}' ({i+1}/{len(keywords[:3])})")
videos = search_pexels_videos(keyword, 2)
for video_data in videos:
if len(video_paths) >= 6: # Límite de 6 videos
break
video_files = video_data.get("video_files", [])
if video_files:
# Tomar el video de mejor calidad
best_file = max(video_files, key=lambda f: f.get("width", 0))
video_url = best_file.get("link")
if video_url:
downloaded_path = download_video(video_url, temp_dir)
if downloaded_path:
video_paths.append(downloaded_path)
if not video_paths:
raise RuntimeError("No se pudieron descargar videos de Pexels")
# Paso 4: Procesar videos
update_task_progress(task_id, f"Paso 4/7: Procesando {len(video_paths)} videos...")
video_clips = []
for path in video_paths:
try:
clip = VideoFileClip(path)
# Tomar máximo 8 segundos de cada clip
duration = min(8, clip.duration)
video_clips.append(clip.subclip(0, duration))
except Exception as e:
logger.error(f"Error procesando video {path}: {e}")
continue
if not video_clips:
raise RuntimeError("No se pudieron procesar los videos")
# Concatenar videos
base_video = concatenate_videoclips(video_clips, method="chain")
# Extender video si es más corto que el audio
if base_video.duration < video_duration:
loops_needed = math.ceil(video_duration / base_video.duration)
base_video = concatenate_videoclips([base_video] * loops_needed)
# Cortar al tiempo exacto del audio
base_video = base_video.subclip(0, video_duration)
# Paso 5: Componer audio final
update_task_progress(task_id, "Paso 5/7: Componiendo audio...")
if music_path and os.path.exists(music_path):
try:
music_clip = AudioFileClip(music_path)
music_clip = loop_audio_to_duration(music_clip, video_duration).volumex(0.2)
final_audio = CompositeAudioClip([music_clip, voice_clip])
except Exception as e:
logger.error(f"Error con música: {e}")
final_audio = voice_clip
else:
final_audio = voice_clip
# Paso 7: Renderizar video final
update_task_progress(task_id, "Paso 7/7: Renderizando video final...")
final_video = base_video.set_audio(final_audio)
output_path = os.path.join(RESULTS_DIR, f"video_{task_id}.mp4")
final_video.write_videofile(
output_path,
fps=15,
codec="libx264",
audio_codec="mp3",
threads=2,
logger=None,
verbose=False
)
# Limpiar clips
voice_clip.close()
if 'music_clip' in locals():
music_clip.close()
base_video.close()
final_video.close()
for clip in video_clips:
clip.close()
return output_path
except Exception as e:
logger.error(f"Error creando video: {e}")
raise
finally:
# Limpiar directorio temporal
try:
shutil.rmtree(temp_dir)
except:
pass
def worker_thread(task_id: str, mode: str, topic: str, user_script: str, music_path: str | None):
"""Hilo worker para procesamiento de video"""
try:
generate_script = (mode == "Generar Guion con IA")
content = topic if generate_script else user_script
output_path = create_video(content, generate_script, music_path, task_id)
TASKS[task_id].update({
"status": "done",
"result": output_path,
"progress_log": "✅ ¡Video completado exitosamente!"
})
except Exception as e:
logger.error(f"Error en worker {task_id}: {e}")
TASKS[task_id].update({
"status": "error",
"error": str(e),
"progress_log": f"❌ Error: {str(e)}"
})
def generate_video_with_progress(mode, topic, user_script, music):
"""Función principal que maneja la generación con progreso en tiempo real"""
# Validar entrada
content = topic if mode == "Generar Guion con IA" else user_script
if not content or not content.strip():
yield "❌ Error: Por favor, ingresa un tema o guion.", None, None
return
# Crear tarea
task_id = uuid.uuid4().hex[:8]
TASKS[task_id] = {
"status": "processing",
"progress_log": "🚀 Iniciando generación de video...",
"timestamp": datetime.utcnow()
}
# Iniciar worker
worker = threading.Thread(
target=worker_thread,
args=(task_id, mode, topic, user_script, music),
daemon=True
)
worker.start()
# Monitorear progreso
while TASKS[task_id]["status"] == "processing":
yield TASKS[task_id]['progress_log'], None, None
time.sleep(1)
# Retornar resultado final
if TASKS[task_id]["status"] == "error":
yield TASKS[task_id]['progress_log'], None, None
elif TASKS[task_id]["status"] == "done":
result_path = TASKS[task_id]['result']
yield TASKS[task_id]['progress_log'], result_path, result_path
# ------------------- Limpieza automática -------------------
def cleanup_old_files():
"""Limpia archivos antiguos cada hora"""
while True:
try:
time.sleep(6600) # 1 hora
now = datetime.utcnow()
logger.info("Ejecutando limpieza de archivos antiguos...")
for task_id, info in list(TASKS.items()):
if "timestamp" in info and now - info["timestamp"] > timedelta(hours=24):
if info.get("result") and os.path.exists(info.get("result")):
try:
os.remove(info["result"])
logger.info(f"Archivo eliminado: {info['result']}")
except Exception as e:
logger.error(f"Error eliminando archivo: {e}")
del TASKS[task_id]
except Exception as e:
logger.error(f"Error en cleanup: {e}")
# Iniciar hilo de limpieza
threading.Thread(target=cleanup_old_files, daemon=True).start()
# ------------------- Interfaz Gradio -------------------
def toggle_input_fields(mode):
"""Alterna los campos de entrada según el modo seleccionado"""
return (
gr.update(visible=mode == "Generar Guion con IA"),
gr.update(visible=mode != "Generar Guion con IA")
)
# Crear interfaz
with gr.Blocks(title="🎬 Generador de Videos IA", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎬 Generador de Videos con IA
Crea videos profesionales a partir de texto usando:
- **Edge TTS** para voz en español
- **GPT-2** para generación de guiones
- **Pexels API** para videos de stock
- **Subtítulos automáticos** y efectos visuales
El progreso se mostrará en tiempo real.
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### ⚙️ Configuración")
mode_radio = gr.Radio(
choices=["Generar Guion con IA", "Usar Mi Guion"],
value="Generar Guion con IA",
label="Método de creación"
)
topic_input = gr.Textbox(
label="💡 Tema para la IA",
placeholder="Ej: Los misterios del océano profundo",
lines=2
)
script_input = gr.Textbox(
label="📝 Tu Guion Completo",
placeholder="Escribe aquí tu guion personalizado...",
lines=8,
visible=False
)
music_input = gr.Audio(
type="filepath",
label="🎵 Música de fondo (opcional)"
)
generate_btn = gr.Button(
"🎬 Generar Video",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.Markdown("### 📊 Progreso y Resultados")
progress_output = gr.Textbox(
label="📋 Log de progreso en tiempo real",
lines=12,
interactive=False,
show_copy_button=True
)
video_output = gr.Video(
label="🎥 Video generado",
height=400
)
download_output = gr.File(
label="📥 Descargar archivo"
)
# Event handlers
mode_radio.change(
fn=toggle_input_fields,
inputs=[mode_radio],
outputs=[topic_input, script_input]
)
generate_btn.click(
fn=generate_video_with_progress,
inputs=[mode_radio, topic_input, script_input, music_input],
outputs=[progress_output, video_output, download_output]
)
gr.Markdown("""
### 📋 Instrucciones:
1. **Elige el método**: Genera un guion con IA o usa el tuyo propio
2. **Configura el contenido**: Ingresa un tema interesante o tu guion
3. **Música opcional**: Sube un archivo de audio para fondo musical
4. **Genera**: Presiona el botón y observa el progreso en tiempo real
⏱️ **Tiempo estimado**: 2-5 minutos dependiendo de la duración del contenido.
""")
# Ejecutar aplicación
if __name__ == "__main__":
logger.info("🚀 Iniciando aplicación Generador de Videos IA...")
# Configurar la cola (versión compatible)
demo.queue(max_size=10)
# Lanzar aplicación (parámetros básicos compatibles)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
share=True
) |