import gradio as gr import torch import soundfile as sf import edge_tts import asyncio from transformers import GPT2Tokenizer, GPT2LMHeadModel from keybert import KeyBERT from moviepy.editor import ( VideoFileClip, AudioFileClip, concatenate_videoclips, concatenate_audioclips, CompositeAudioClip, AudioClip, TextClip, CompositeVideoClip, VideoClip ) import numpy as np import json import logging import os import requests import re import math import tempfile import shutil import uuid import threading import time from datetime import datetime, timedelta # ------------------- Configuración de Timeout ------------------- os.environ["GRADIO_SERVER_TIMEOUT"] = "1800" # 30 minutos en segundos # ------------------- Configuración & Globals ------------------- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") if not PEXELS_API_KEY: logger.warning("PEXELS_API_KEY no definido. Los videos no funcionarán.") tokenizer, gpt2_model, kw_model = None, None, None RESULTS_DIR = "video_results" os.makedirs(RESULTS_DIR, exist_ok=True) TASKS = {} # ------------------- Motor Edge TTS ------------------- class EdgeTTSEngine: def __init__(self, voice="es-ES-AlvaroNeural"): self.voice = voice logger.info(f"Inicializando Edge TTS con voz: {voice}") async def _synthesize_async(self, text, output_path): """Sintetiza texto a voz usando Edge TTS de forma asíncrona""" try: communicate = edge_tts.Communicate(text, self.voice) await communicate.save(output_path) return True except Exception as e: logger.error(f"Error en Edge TTS: {e}") return False def synthesize(self, text, output_path): """Sintetiza texto a voz (wrapper síncrono)""" try: # Ejecutar la función async en un nuevo loop return asyncio.run(self._synthesize_async(text, output_path)) except Exception as e: logger.error(f"Error al sintetizar con Edge TTS: {e}") return False # Instancia global del motor TTS tts_engine = EdgeTTSEngine() # ------------------- Carga Perezosa de Modelos ------------------- def get_tokenizer(): global tokenizer if tokenizer is None: logger.info("Cargando tokenizer GPT2 español...") tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish") if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token return tokenizer def get_gpt2_model(): global gpt2_model if gpt2_model is None: logger.info("Cargando modelo GPT-2 español...") gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval() return gpt2_model def get_kw_model(): global kw_model if kw_model is None: logger.info("Cargando modelo KeyBERT multilingüe...") kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2") return kw_model # ------------------- Funciones del Pipeline ------------------- def update_task_progress(task_id, message): if task_id in TASKS: TASKS[task_id]['progress_log'] = message logger.info(f"[{task_id}] {message}") def gpt2_script(prompt: str) -> str: """Genera un guión usando GPT-2""" try: local_tokenizer = get_tokenizer() local_gpt2_model = get_gpt2_model() instruction = f"Escribe un guion corto y coherente sobre: {prompt}" inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512) outputs = local_gpt2_model.generate( **inputs, max_length=160 + inputs["input_ids"].shape[1], do_sample=True, top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3, pad_token_id=local_tokenizer.pad_token_id, eos_token_id=local_tokenizer.eos_token_id, ) text = local_tokenizer.decode(outputs[0], skip_special_tokens=True) generated = text.split("sobre:")[-1].strip() return generated if generated else prompt except Exception as e: logger.error(f"Error generando guión: {e}") return f"Hoy hablaremos sobre {prompt}. Este es un tema fascinante que merece nuestra atención." def generate_tts_audio(text: str, output_path: str) -> bool: """Genera audio usando Edge TTS""" try: logger.info("Generando audio con Edge TTS...") success = tts_engine.synthesize(text, output_path) if success and os.path.exists(output_path) and os.path.getsize(output_path) > 0: logger.info(f"Audio generado exitosamente: {output_path}") return True else: logger.error("El archivo de audio no se generó correctamente") return False except Exception as e: logger.error(f"Error generando TTS: {e}") return False def extract_keywords(text: str) -> list[str]: """Extrae palabras clave del texto para búsqueda de videos""" try: local_kw_model = get_kw_model() clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower()) kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5) keywords = [k.replace(" ", "+") for k, _ in kws if k] return keywords if keywords else ["naturaleza", "paisaje"] except Exception as e: logger.error(f"Error extrayendo keywords: {e}") return ["mystery", "conspiracy", "alien", "UFO", "secret", "cover-up", "illusion", "paranoia", "secret society", "lie", "simulation", "matrix", "terror", "darkness", "shadow", "enigma", "urban legend", "unknown", "hidden", "mistrust", "experiment", "government", "control", "surveillance", "propaganda", "deception", "whistleblower", "anomaly", "extraterrestrial", "shadow government", "cabal", "deep state", "new world order", "mind control", "brainwashing", "disinformation", "false flag", "assassin", "black ops", "anomaly", "men in black", "abduction", "hybrid", "ancient aliens", "hollow earth", "simulation theory", "alternate reality", "predictive programming", "symbolism", "occult", "eerie", "haunting", "unexplained", "forbidden knowledge", "redacted", "conspiracy theorist"] def search_pexels_videos(query: str, count: int = 3) -> list[dict]: """Busca videos en Pexels""" if not PEXELS_API_KEY: return [] try: response = requests.get( "https://api.pexels.com/videos/search", headers={"Authorization": PEXELS_API_KEY}, params={"query": query, "per_page": count, "orientation": "landscape"}, timeout=20 ) response.raise_for_status() return response.json().get("videos", []) except Exception as e: logger.error(f"Error buscando videos en Pexels: {e}") return [] def download_video(url: str, folder: str) -> str | None: """Descarga un video desde URL""" try: filename = f"{uuid.uuid4().hex}.mp4" filepath = os.path.join(folder, filename) with requests.get(url, stream=True, timeout=60) as response: response.raise_for_status() with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=1024*1024): f.write(chunk) if os.path.exists(filepath) and os.path.getsize(filepath) > 1000: return filepath else: logger.error(f"Archivo descargado inválido: {filepath}") return None except Exception as e: logger.error(f"Error descargando video {url}: {e}") return None def create_subtitle_clips(script: str, video_width: int, video_height: int, duration: float): """Crea clips de subtítulos""" try: sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()] if not sentences: return [] total_words = sum(len(s.split()) for s in sentences) or 1 time_per_word = duration / total_words clips = [] current_time = 0.0 for sentence in sentences: num_words = len(sentence.split()) sentence_duration = num_words * time_per_word if sentence_duration < 0.5: continue txt_clip = ( TextClip( sentence, fontsize=max(20, int(video_height * 0.05)), color="white", stroke_color="black", stroke_width=2, method="caption", size=(int(video_width * 0.9), None), font="Arial-Bold" ) .set_start(current_time) .set_duration(sentence_duration) .set_position(("center", "bottom")) ) clips.append(txt_clip) current_time += sentence_duration return clips except Exception as e: logger.error(f"Error creando subtítulos: {e}") return [] def loop_audio_to_duration(audio_clip: AudioFileClip, target_duration: float) -> AudioFileClip: """Hace loop del audio hasta alcanzar la duración objetivo""" try: if audio_clip.duration >= target_duration: return audio_clip.subclip(0, target_duration) loops_needed = math.ceil(target_duration / audio_clip.duration) looped_audio = concatenate_audioclips([audio_clip] * loops_needed) return looped_audio.subclip(0, target_duration) except Exception as e: logger.error(f"Error haciendo loop del audio: {e}") return audio_clip def create_video(script_text: str, generate_script: bool, music_path: str | None, task_id: str) -> str: """Función principal para crear el video""" temp_dir = tempfile.mkdtemp() try: # Paso 1: Generar o usar guión update_task_progress(task_id, "Paso 1/7: Preparando guión...") if generate_script: script = gpt2_script(script_text) else: script = script_text.strip() if not script: raise ValueError("El guión está vacío") # Paso 2: Generar audio TTS update_task_progress(task_id, "Paso 2/7: Generando audio con Edge TTS...") audio_path = os.path.join(temp_dir, "voice.wav") if not generate_tts_audio(script, audio_path): raise RuntimeError("Error generando el audio TTS") voice_clip = AudioFileClip(audio_path) video_duration = voice_clip.duration if video_duration < 1: raise ValueError("El audio generado es demasiado corto") # Paso 3: Buscar y descargar videos update_task_progress(task_id, "Paso 3/7: Buscando videos en Pexels...") video_paths = [] keywords = extract_keywords(script) for i, keyword in enumerate(keywords[:3]): # Límite de 3 keywords update_task_progress(task_id, f"Paso 3/7: Buscando videos para '{keyword}' ({i+1}/{len(keywords[:3])})") videos = search_pexels_videos(keyword, 2) for video_data in videos: if len(video_paths) >= 6: # Límite de 6 videos break video_files = video_data.get("video_files", []) if video_files: # Tomar el video de mejor calidad best_file = max(video_files, key=lambda f: f.get("width", 0)) video_url = best_file.get("link") if video_url: downloaded_path = download_video(video_url, temp_dir) if downloaded_path: video_paths.append(downloaded_path) if not video_paths: raise RuntimeError("No se pudieron descargar videos de Pexels") # Paso 4: Procesar videos update_task_progress(task_id, f"Paso 4/7: Procesando {len(video_paths)} videos...") video_clips = [] for path in video_paths: try: clip = VideoFileClip(path) # Tomar máximo 8 segundos de cada clip duration = min(8, clip.duration) video_clips.append(clip.subclip(0, duration)) except Exception as e: logger.error(f"Error procesando video {path}: {e}") continue if not video_clips: raise RuntimeError("No se pudieron procesar los videos") # Concatenar videos base_video = concatenate_videoclips(video_clips, method="chain") # Extender video si es más corto que el audio if base_video.duration < video_duration: loops_needed = math.ceil(video_duration / base_video.duration) base_video = concatenate_videoclips([base_video] * loops_needed) # Cortar al tiempo exacto del audio base_video = base_video.subclip(0, video_duration) # Paso 5: Componer audio final update_task_progress(task_id, "Paso 5/7: Componiendo audio...") if music_path and os.path.exists(music_path): try: music_clip = AudioFileClip(music_path) music_clip = loop_audio_to_duration(music_clip, video_duration).volumex(0.2) final_audio = CompositeAudioClip([music_clip, voice_clip]) except Exception as e: logger.error(f"Error con música: {e}") final_audio = voice_clip else: final_audio = voice_clip # Paso 6: Crear subtítulos update_task_progress(task_id, "Paso 6/7: Agregando subtítulos...") subtitle_clips = create_subtitle_clips(script, base_video.w, base_video.h, video_duration) # Paso 7: Renderizar video final update_task_progress(task_id, "Paso 7/7: Renderizando video final...") final_video = CompositeVideoClip([base_video] + subtitle_clips).set_audio(final_audio) output_path = os.path.join(RESULTS_DIR, f"video_{task_id}.mp4") final_video.write_videofile( output_path, fps=24, codec="libx264", audio_codec="aac", threads=2, logger=None, verbose=False ) # Limpiar clips voice_clip.close() if 'music_clip' in locals(): music_clip.close() base_video.close() final_video.close() for clip in video_clips: clip.close() return output_path except Exception as e: logger.error(f"Error creando video: {e}") raise finally: # Limpiar directorio temporal try: shutil.rmtree(temp_dir) except: pass def worker_thread(task_id: str, mode: str, topic: str, user_script: str, music_path: str | None): """Hilo worker para procesamiento de video""" try: generate_script = (mode == "Generar Guion con IA") content = topic if generate_script else user_script output_path = create_video(content, generate_script, music_path, task_id) TASKS[task_id].update({ "status": "done", "result": output_path, "progress_log": "✅ ¡Video completado exitosamente!" }) except Exception as e: logger.error(f"Error en worker {task_id}: {e}") TASKS[task_id].update({ "status": "error", "error": str(e), "progress_log": f"❌ Error: {str(e)}" }) def generate_video_with_progress(mode, topic, user_script, music): """Función principal que maneja la generación con progreso en tiempo real""" # Validar entrada content = topic if mode == "Generar Guion con IA" else user_script if not content or not content.strip(): yield "❌ Error: Por favor, ingresa un tema o guion.", None, None return # Crear tarea task_id = uuid.uuid4().hex[:8] TASKS[task_id] = { "status": "processing", "progress_log": "🚀 Iniciando generación de video...", "timestamp": datetime.utcnow() } # Iniciar worker worker = threading.Thread( target=worker_thread, args=(task_id, mode, topic, user_script, music), daemon=True ) worker.start() # Monitorear progreso while TASKS[task_id]["status"] == "processing": yield TASKS[task_id]['progress_log'], None, None time.sleep(1) # Retornar resultado final if TASKS[task_id]["status"] == "error": yield TASKS[task_id]['progress_log'], None, None elif TASKS[task_id]["status"] == "done": result_path = TASKS[task_id]['result'] yield TASKS[task_id]['progress_log'], result_path, result_path # ------------------- Limpieza automática ------------------- def cleanup_old_files(): """Limpia archivos antiguos cada hora""" while True: try: time.sleep(3600) # 1 hora now = datetime.utcnow() logger.info("Ejecutando limpieza de archivos antiguos...") for task_id, info in list(TASKS.items()): if "timestamp" in info and now - info["timestamp"] > timedelta(hours=24): if info.get("result") and os.path.exists(info.get("result")): try: os.remove(info["result"]) logger.info(f"Archivo eliminado: {info['result']}") except Exception as e: logger.error(f"Error eliminando archivo: {e}") del TASKS[task_id] except Exception as e: logger.error(f"Error en cleanup: {e}") # Iniciar hilo de limpieza threading.Thread(target=cleanup_old_files, daemon=True).start() # ------------------- Interfaz Gradio ------------------- def toggle_input_fields(mode): """Alterna los campos de entrada según el modo seleccionado""" return ( gr.update(visible=mode == "Generar Guion con IA"), gr.update(visible=mode != "Generar Guion con IA") ) # Crear interfaz with gr.Blocks(title="🎬 Generador de Videos IA", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎬 Generador de Videos con IA Crea videos profesionales a partir de texto usando: - **Edge TTS** para voz en español - **GPT-2** para generación de guiones - **Pexels API** para videos de stock - **Subtítulos automáticos** y efectos visuales El progreso se mostrará en tiempo real. """) with gr.Row(): with gr.Column(scale=2): gr.Markdown("### ⚙️ Configuración") mode_radio = gr.Radio( choices=["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Método de creación" ) topic_input = gr.Textbox( label="💡 Tema para la IA", placeholder="Ej: Los misterios del océano profundo", lines=2 ) script_input = gr.Textbox( label="📝 Tu Guion Completo", placeholder="Escribe aquí tu guion personalizado...", lines=8, visible=False ) music_input = gr.Audio( type="filepath", label="🎵 Música de fondo (opcional)" ) generate_btn = gr.Button( "🎬 Generar Video", variant="primary", size="lg" ) with gr.Column(scale=2): gr.Markdown("### 📊 Progreso y Resultados") progress_output = gr.Textbox( label="📋 Log de progreso en tiempo real", lines=12, interactive=False, show_copy_button=True ) video_output = gr.Video( label="🎥 Video generado", height=400 ) download_output = gr.File( label="📥 Descargar archivo" ) # Event handlers mode_radio.change( fn=toggle_input_fields, inputs=[mode_radio], outputs=[topic_input, script_input] ) generate_btn.click( fn=generate_video_with_progress, inputs=[mode_radio, topic_input, script_input, music_input], outputs=[progress_output, video_output, download_output] ) gr.Markdown(""" ### 📋 Instrucciones: 1. **Elige el método**: Genera un guion con IA o usa el tuyo propio 2. **Configura el contenido**: Ingresa un tema interesante o tu guion 3. **Música opcional**: Sube un archivo de audio para fondo musical 4. **Genera**: Presiona el botón y observa el progreso en tiempo real ⏱️ **Tiempo estimado**: 2-5 minutos dependiendo de la duración del contenido. """) # Ejecutar aplicación if __name__ == "__main__": logger.info("🚀 Iniciando aplicación Generador de Videos IA...") # Configurar la cola (versión compatible) demo.queue(max_size=10) # Lanzar aplicación (parámetros básicos compatibles) demo.launch( server_name="0.0.0.0", server_port=7860, show_api=False )