File size: 5,669 Bytes
efcf35e
 
 
 
47f64a9
efcf35e
 
698d75d
4d3de5e
 
76bc95f
 
 
 
 
4d3de5e
47f64a9
efcf35e
76bc95f
efcf35e
76bc95f
efcf35e
76bc95f
47f64a9
 
efcf35e
 
 
47f64a9
c2df3e1
 
 
 
 
 
 
 
 
 
47f64a9
8b02fc8
 
4d3de5e
efcf35e
 
 
76bc95f
c2df3e1
76bc95f
efcf35e
76bc95f
 
47f64a9
 
efcf35e
 
 
 
1219a4a
efcf35e
4d3de5e
 
efcf35e
4d3de5e
efcf35e
1219a4a
efcf35e
 
 
 
 
 
 
 
47f64a9
efcf35e
 
 
 
 
 
 
 
 
 
 
 
47f64a9
efcf35e
 
 
 
76bc95f
efcf35e
 
 
47f64a9
efcf35e
 
 
 
47f64a9
efcf35e
 
 
47f64a9
1219a4a
 
 
 
 
47f64a9
efcf35e
 
 
 
 
 
 
 
4d3de5e
efcf35e
 
76bc95f
efcf35e
 
 
 
47f64a9
 
76bc95f
47f64a9
efcf35e
 
 
 
 
76bc95f
efcf35e
 
 
 
 
 
76bc95f
efcf35e
 
 
76bc95f
 
 
 
 
 
 
 
 
47f64a9
efcf35e
47f64a9
 
1219a4a
efcf35e
 
 
47f64a9
 
efcf35e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)


DESCRIPTION = """\
# Gemma 3 270m IT πŸ’ŽπŸ’¬

Try this mini model by Google.

[πŸͺͺ **Model card**](https://huggingface.co/google/gemma-3-270m-it)
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Pick attention backend based on device availability
if torch.cuda.is_available():
    device = "cuda"
    attn_impl = "flash_attention_2"   # or "flash" depending on the library
    torch_dtype = torch.bfloat16      # or torch.float16
else:
    device = "cpu"
    attn_impl = "eager"
    torch_dtype = torch.bfloat16      # or float32, bfloat16 supported on CPUs with AVX512-BF16 or AMX (e.g., Intel Ice Lake / Sapphire Rapids, some newer AMD). But many ops may still fall back to float32.

# model_id = "google/gemma-3-270m-it"
model_id = "unsloth/gemma-3-270m-it"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation=attn_impl,
    trust_remote_code=True,
)
model.config.sliding_window = 4096
model.eval()


@spaces.GPU(duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_message: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.001,
    top_p: float = 1.0,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = [{"role": "system", "content": system_message}]
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
        disable_compile=True,  #  https://ai.google.dev/gemma/docs/core/huggingface_text_full_finetune#test_model_inference
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
            value="",
            label="System message",
            render=False,
        ),        
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=4.0,
            step=0.1,
            value=1.0,  # default from https://huggingface.co/docs/transformers/en/main_classes/text_generation
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,  # from https://huggingface.co/google/gemma-3-270m-it/blob/main/generation_config.json
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=64,  # from https://huggingface.co/google/gemma-3-270m-it/blob/main/generation_config.json
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,  # default from https://huggingface.co/docs/transformers/en/main_classes/text_generation
        ),
    ],
    stop_btn=None,
    examples = [
        ["Hi! How are you?"],
        ["Pros and cons of a long-term relationship. Bullet list with max 3 pros and 3 cons, concise."],
        ["How many hours does it take a man to eat a helicopter?"],
        ["How do you open a JSON file in Python?"],
        ["Make a bullet list of pros and cons of living in San Francisco. Maximum 2 pros and 2 cons."],
        ["Invent a short story with animals about the value of friendship."],
        ["Can you briefly explain what the Python programming language is?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI Research'."],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True, theme="soft") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()