Spaces:
Sleeping
Sleeping
File size: 16,985 Bytes
c1c9e88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
#!/usr/bin/env python3
"""
Teacher-Student知识蒸馏脚本
将经过SFT+PPO RLHF的Teacher模型蒸馏到更小的Student模型
"""
import os
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
logging,
)
from datasets import load_dataset, Dataset as HFDataset
from peft import LoraConfig, get_peft_model, TaskType
import numpy as np
import wandb
from typing import Dict, List, Any, Optional
import json
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
logging.set_verbosity(logging.CRITICAL)
class DistillationConfig:
"""蒸馏训练配置"""
# 模型路径
teacher_model_path = "./rlhf_teacher_model" # RLHF后的Teacher模型
student_model_name = "microsoft/DialoGPT-medium" # 替换为实际的OpenAI OSS 20B模型
# 蒸馏参数
temperature = 4.0 # 蒸馏温度
alpha = 0.7 # 蒸馏损失权重
beta = 0.3 # 学生损失权重
gamma = 0.1 # 特征匹配损失权重
# 训练参数
learning_rate = 1e-4
num_train_epochs = 3
per_device_train_batch_size = 2
per_device_eval_batch_size = 4
gradient_accumulation_steps = 8
warmup_ratio = 0.1
weight_decay = 0.01
logging_steps = 50
eval_steps = 500
save_steps = 1000
# LoRA配置(为Student模型添加LoRA以提高训练效率)
use_lora = True
lora_r = 32
lora_alpha = 64
lora_dropout = 0.1
# 数据配置
max_length = 512
num_distill_samples = 10000 # 用于蒸馏的样本数量
# 输出配置
output_dir = "./distilled_student_model"
run_name = "teacher-student-distillation"
class DistillationDataset(Dataset):
"""蒸馏数据集类"""
def __init__(self, teacher_outputs: List[Dict], tokenizer, max_length: int = 512):
self.data = teacher_outputs
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
# 构建完整的输入-输出序列
full_text = f"### Human: {item['prompt']}\n### Assistant: {item['response']}"
# Tokenize
encoded = self.tokenizer(
full_text,
truncation=True,
padding="max_length",
max_length=self.max_length,
return_tensors="pt"
)
return {
"input_ids": encoded["input_ids"].squeeze(),
"attention_mask": encoded["attention_mask"].squeeze(),
"teacher_logits": torch.tensor(item["teacher_logits"], dtype=torch.float),
"labels": encoded["input_ids"].squeeze()
}
class KnowledgeDistillationTrainer(Trainer):
"""知识蒸馏训练器"""
def __init__(self, teacher_model, student_model, temperature=4.0, alpha=0.7, beta=0.3, gamma=0.1, **kwargs):
super().__init__(model=student_model, **kwargs)
self.teacher_model = teacher_model
self.teacher_model.eval() # 冻结Teacher模型
self.temperature = temperature
self.alpha = alpha # 蒸馏损失权重
self.beta = beta # 学生损失权重
self.gamma = gamma # 特征匹配损失权重
def compute_loss(self, model, inputs, return_outputs=False):
"""计算蒸馏损失"""
labels = inputs.get("labels")
teacher_logits = inputs.get("teacher_logits").to(model.device)
# Student模型前向传播
student_outputs = model(**{k: v for k, v in inputs.items() if k not in ["teacher_logits"]})
student_logits = student_outputs.logits
# 计算各种损失
losses = {}
# 1. 标准语言模型损失 (学生模型自己的损失)
if labels is not None:
shift_logits = student_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
student_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
losses["student_loss"] = student_loss
# 2. 蒸馏损失 (KL散度)
if teacher_logits is not None:
# 确保维度匹配
if teacher_logits.shape != student_logits.shape:
min_seq_len = min(teacher_logits.shape[1], student_logits.shape[1])
teacher_logits = teacher_logits[:, :min_seq_len, :]
student_logits_for_distill = student_logits[:, :min_seq_len, :]
else:
student_logits_for_distill = student_logits
# 计算软标签概率
teacher_probs = F.softmax(teacher_logits / self.temperature, dim=-1)
student_log_probs = F.log_softmax(student_logits_for_distill / self.temperature, dim=-1)
# KL散度损失
distill_loss = F.kl_div(
student_log_probs,
teacher_probs,
reduction="batchmean"
) * (self.temperature ** 2)
losses["distill_loss"] = distill_loss
# 3. 组合总损失
total_loss = 0
if "student_loss" in losses:
total_loss += self.beta * losses["student_loss"]
if "distill_loss" in losses:
total_loss += self.alpha * losses["distill_loss"]
# 记录各项损失
self.log({
"train/total_loss": total_loss.item(),
"train/student_loss": losses.get("student_loss", 0).item() if "student_loss" in losses else 0,
"train/distill_loss": losses.get("distill_loss", 0).item() if "distill_loss" in losses else 0,
})
return (total_loss, student_outputs) if return_outputs else total_loss
def prepare_student_model(config: DistillationConfig):
"""准备Student模型"""
print("🎓 Preparing student model...")
# 加载Student基础模型
student_model = AutoModelForCausalLM.from_pretrained(
config.student_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
# 添加LoRA(可选,用于高效训练)
if config.use_lora:
print("🔧 Adding LoRA to student model...")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=config.lora_r,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
]
)
student_model = get_peft_model(student_model, lora_config)
student_model.print_trainable_parameters()
return student_model
def load_teacher_model(config: DistillationConfig):
"""加载Teacher模型"""
print("👨🏫 Loading teacher model...")
teacher_model = AutoModelForCausalLM.from_pretrained(
config.teacher_model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
teacher_model.eval()
return teacher_model
def generate_distillation_data(teacher_model, tokenizer, config: DistillationConfig):
"""生成蒸馏数据"""
print("📊 Generating distillation dataset...")
# 加载提示数据集
dataset_sources = [
"smangrul/ad-copy-generation",
# 可以添加更多数据源
]
all_prompts = []
for source in dataset_sources:
try:
ds = load_dataset(source, split="train")
# 提取提示词
for item in ds:
if "conversations" in item and len(item["conversations"]) > 0:
prompt = item["conversations"][0].get("value", "")
if len(prompt.strip()) > 10:
all_prompts.append(prompt.strip())
except Exception as e:
print(f"⚠️ Error loading {source}: {e}")
# 限制样本数量
if len(all_prompts) > config.num_distill_samples:
all_prompts = all_prompts[:config.num_distill_samples]
print(f"📝 Generating responses for {len(all_prompts)} prompts...")
distillation_data = []
teacher_model.eval()
with torch.no_grad():
for i, prompt in enumerate(tqdm(all_prompts, desc="Generating teacher responses")):
try:
# 格式化输入
formatted_prompt = f"### Human: {prompt}\n### Assistant:"
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=config.max_length // 2
).to(teacher_model.device)
# 生成响应
outputs = teacher_model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=True
)
# 解码响应
generated_ids = outputs.sequences[0][inputs.input_ids.shape[1]:]
response = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
# 获取Teacher的logits
full_text = f"### Human: {prompt}\n### Assistant: {response}"
full_inputs = tokenizer(
full_text,
return_tensors="pt",
truncation=True,
max_length=config.max_length
).to(teacher_model.device)
teacher_outputs = teacher_model(**full_inputs)
teacher_logits = teacher_outputs.logits.cpu().numpy()
distillation_data.append({
"prompt": prompt,
"response": response,
"teacher_logits": teacher_logits.tolist()
})
# 定期保存中间结果
if (i + 1) % 100 == 0:
print(f"Generated {i + 1}/{len(all_prompts)} samples")
except Exception as e:
print(f"⚠️ Error generating for prompt {i}: {e}")
continue
print(f"✅ Generated {len(distillation_data)} teacher-student pairs")
# 保存蒸馏数据
with open("distillation_data.json", "w", encoding="utf-8") as f:
json.dump(distillation_data, f, ensure_ascii=False, indent=2)
return distillation_data
def create_data_collator(tokenizer):
"""创建数据整理器"""
return DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
pad_to_multiple_of=8
)
def run_distillation():
"""主要的蒸馏训练流程"""
print("🚀 Starting Teacher-Student Distillation...")
config = DistillationConfig()
# 初始化wandb
wandb.init(
project="teacher-student-distillation",
config=vars(config),
name=config.run_name
)
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.teacher_model_path)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 加载模型
teacher_model = load_teacher_model(config)
student_model = prepare_student_model(config)
# 生成蒸馏数据
if os.path.exists("distillation_data.json"):
print("📂 Loading existing distillation data...")
with open("distillation_data.json", "r", encoding="utf-8") as f:
distillation_data = json.load(f)
else:
distillation_data = generate_distillation_data(teacher_model, tokenizer, config)
# 创建数据集
train_size = int(0.9 * len(distillation_data))
train_data = distillation_data[:train_size]
eval_data = distillation_data[train_size:]
train_dataset = DistillationDataset(train_data, tokenizer, config.max_length)
eval_dataset = DistillationDataset(eval_data, tokenizer, config.max_length)
print(f"📊 Training samples: {len(train_dataset)}")
print(f"📊 Evaluation samples: {len(eval_dataset)}")
# 训练参数
training_args = TrainingArguments(
output_dir=config.output_dir,
overwrite_output_dir=True,
num_train_epochs=config.num_train_epochs,
per_device_train_batch_size=config.per_device_train_batch_size,
per_device_eval_batch_size=config.per_device_eval_batch_size,
gradient_accumulation_steps=config.gradient_accumulation_steps,
learning_rate=config.learning_rate,
weight_decay=config.weight_decay,
warmup_ratio=config.warmup_ratio,
logging_steps=config.logging_steps,
eval_steps=config.eval_steps,
save_steps=config.save_steps,
evaluation_strategy="steps",
save_strategy="steps",
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
report_to="wandb",
run_name=config.run_name,
fp16=True,
dataloader_pin_memory=False,
remove_unused_columns=False,
group_by_length=True,
)
# 创建数据整理器
data_collator = create_data_collator(tokenizer)
# 创建蒸馏训练器
trainer = KnowledgeDistillationTrainer(
teacher_model=teacher_model,
student_model=student_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
temperature=config.temperature,
alpha=config.alpha,
beta=config.beta,
gamma=config.gamma,
)
# 开始训练
print("🔥 Starting distillation training...")
trainer.train()
# 保存最终模型
print("💾 Saving distilled student model...")
trainer.save_model()
tokenizer.save_pretrained(config.output_dir)
# 评估模型
print("🧪 Evaluating distilled model...")
evaluate_distilled_model(trainer.model, tokenizer, config)
wandb.finish()
print("✅ Distillation training completed!")
def evaluate_distilled_model(model, tokenizer, config: DistillationConfig):
"""评估蒸馏后的模型"""
print("📊 Evaluating distilled student model...")
test_prompts = [
"Create an advertisement for a revolutionary AI-powered fitness tracker",
"Write marketing copy for an eco-friendly electric vehicle",
"Generate a slogan for a productivity app for remote workers",
"Create ad copy for a sustainable fashion brand targeting millennials",
"Write promotional content for a mental health app",
]
model.eval()
results = []
for prompt in test_prompts:
formatted_prompt = f"### Human: {prompt}\n### Assistant:"
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = response[len(formatted_prompt):].strip()
results.append({
"prompt": prompt,
"response": generated_text
})
print(f"\n🔍 Prompt: {prompt}")
print(f"📝 Student Response: {generated_text}")
print("-" * 80)
# 保存评估结果
with open(f"{config.output_dir}/evaluation_results.json", "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
return results
if __name__ == "__main__":
# 设置环境变量
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# 检查GPU
if torch.cuda.is_available():
print(f"🔥 Using {torch.cuda.device_count()} GPUs")
for i in range(torch.cuda.device_count()):
print(f" GPU {i}: {torch.cuda.get_device_name(i)}")
else:
print("⚠️ Warning: No GPU available, using CPU (very slow)")
# 开始蒸馏训练
run_distillation() |