Spaces:
Running
Running
File size: 8,355 Bytes
c1c9e88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#!/usr/bin/env python3
"""
QLoRA Fine-tuning script for OpenAI OSS 120B model
Using smangrul/ad-copy-generation dataset for advertisement copy generation
"""
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel, TaskType, get_peft_model
from trl import SFTTrainer
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
logging.set_verbosity(logging.CRITICAL)
# Configuration
class Config:
# Model configuration
model_name = "microsoft/DialoGPT-medium" # Replace with actual OpenAI OSS 120B model name
dataset_name = "smangrul/ad-copy-generation"
# Training parameters
output_dir = "./sft_results"
num_train_epochs = 3
per_device_train_batch_size = 1
gradient_accumulation_steps = 4
optim = "paged_adamw_32bit"
save_steps = 25
logging_steps = 25
learning_rate = 2e-4
weight_decay = 0.001
fp16 = False
bf16 = False
max_grad_norm = 0.3
max_steps = -1
warmup_ratio = 0.03
group_by_length = True
lr_scheduler_type = "constant"
report_to = "tensorboard"
# QLoRA parameters
lora_alpha = 16
lora_dropout = 0.1
lora_r = 64
# bitsandbytes parameters
use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False
# SFT parameters
max_seq_length = 512
packing = False
def create_bnb_config():
"""Create BitsAndBytesConfig for 4-bit quantization"""
bnb_config = BitsAndBytesConfig(
load_in_4bit=Config.use_4bit,
bnb_4bit_quant_type=Config.bnb_4bit_quant_type,
bnb_4bit_compute_dtype=getattr(torch, Config.bnb_4bit_compute_dtype),
bnb_4bit_use_double_quant=Config.use_nested_quant,
)
return bnb_config
def load_model_and_tokenizer():
"""Load model and tokenizer with quantization"""
print("Loading model and tokenizer...")
# Create BnB config
bnb_config = create_bnb_config()
# Load model
model = AutoModelForCausalLM.from_pretrained(
Config.model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
use_auth_token=True, # If using gated model
)
model.config.use_cache = False
model.config.pretraining_tp = 1
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
Config.model_name,
trust_remote_code=True,
use_auth_token=True, # If using gated model
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
return model, tokenizer
def create_peft_config():
"""Create PEFT (LoRA) configuration"""
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=Config.lora_r,
lora_alpha=Config.lora_alpha,
lora_dropout=Config.lora_dropout,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
)
return peft_config
def load_and_prepare_dataset(tokenizer):
"""Load and prepare the dataset"""
print("Loading dataset...")
# Load dataset
dataset = load_dataset(Config.dataset_name, split="train")
print(f"Dataset loaded: {len(dataset)} samples")
# Format dataset for chat completion
def format_prompts(examples):
texts = []
for conversation in examples["conversations"]:
if len(conversation) >= 2:
user_msg = conversation[0]["value"]
assistant_msg = conversation[1]["value"]
# Format as chat template
text = f"### Human: {user_msg}\n### Assistant: {assistant_msg}{tokenizer.eos_token}"
texts.append(text)
else:
# Fallback for malformed data
texts.append(f"### Human: Create an advertisement\n### Assistant: {conversation[0]['value']}{tokenizer.eos_token}")
return {"text": texts}
# Apply formatting
dataset = dataset.map(
format_prompts,
batched=True,
remove_columns=dataset.column_names
)
return dataset
def create_training_arguments():
"""Create training arguments"""
training_arguments = TrainingArguments(
output_dir=Config.output_dir,
num_train_epochs=Config.num_train_epochs,
per_device_train_batch_size=Config.per_device_train_batch_size,
gradient_accumulation_steps=Config.gradient_accumulation_steps,
optim=Config.optim,
save_steps=Config.save_steps,
logging_steps=Config.logging_steps,
learning_rate=Config.learning_rate,
weight_decay=Config.weight_decay,
fp16=Config.fp16,
bf16=Config.bf16,
max_grad_norm=Config.max_grad_norm,
max_steps=Config.max_steps,
warmup_ratio=Config.warmup_ratio,
group_by_length=Config.group_by_length,
lr_scheduler_type=Config.lr_scheduler_type,
report_to=Config.report_to,
save_strategy="steps",
evaluation_strategy="no",
load_best_model_at_end=False,
push_to_hub=False,
remove_unused_columns=False,
)
return training_arguments
def main():
"""Main fine-tuning function"""
print("π Starting QLoRA fine-tuning of OpenAI OSS 120B model")
# Check CUDA availability
if not torch.cuda.is_available():
raise RuntimeError("CUDA is required for this training script")
print(f"Using GPU: {torch.cuda.get_device_name()}")
print(f"Available VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer()
# Apply PEFT
peft_config = create_peft_config()
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Load and prepare dataset
dataset = load_and_prepare_dataset(tokenizer)
# Create training arguments
training_arguments = create_training_arguments()
# Create trainer
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=Config.max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
packing=Config.packing,
)
# Start training
print("π₯ Starting training...")
trainer.train()
# Save model
print("πΎ Saving model...")
trainer.model.save_pretrained(Config.output_dir)
tokenizer.save_pretrained(Config.output_dir)
print("β
Training completed!")
# Test the model
test_model(trainer.model, tokenizer)
def test_model(model, tokenizer):
"""Test the fine-tuned model"""
print("\nπ§ͺ Testing the fine-tuned model...")
# Test prompts
test_prompts = [
"Create an advertisement for a new smartphone with advanced camera features",
"Write ad copy for an eco-friendly clothing brand targeting young professionals",
"Generate marketing content for a fitness app with AI personal trainer",
]
for prompt in test_prompts:
formatted_prompt = f"### Human: {prompt}\n### Assistant:"
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = response[len(formatted_prompt):].strip()
print(f"\nπ Prompt: {prompt}")
print(f"π Generated: {generated_text}")
print("-" * 50)
if __name__ == "__main__":
# Set environment variables
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
main() |