AdGPT / train_lora.py
goodmodeler's picture
add train lora
686c304
raw
history blame
1.4 kB
# train_lora.py – QLoRA + DeepSpeed DreamBooth Fine-Tuning (Stable Diffusion)
import os, argparse, torch
from diffusers import StableDiffusionPipeline, DDPMScheduler
from diffusers import DreamBoothLoraTrainer
from peft import LoraConfig
from accelerate import Accelerator
parser = argparse.ArgumentParser()
parser.add_argument("--data", default="./nyc_ads_dataset") # 你的训练图片目录
args = parser.parse_args()
# LoRA 配置(兼容 QLoRA)
lora_cfg = LoraConfig(
r=8,
lora_alpha=32,
lora_dropout=0.05,
target_modules=["q_proj", "v_proj"]
)
# 4-bit 量化加载 SD-1.5
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
load_in_4bit=True,
quantization_config={
"bnb_4bit_compute_dtype": torch.float16,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4"
},
)
# DreamBooth LoRA Trainer
trainer = DreamBoothLoraTrainer(
instance_data_root=args.data,
instance_prompt="a photo of an urbanad nyc",
lora_config=lora_cfg,
output_dir="./nyc-ad-model",
max_train_steps=400,
train_batch_size=1,
gradient_checkpointing=True,
)
# DeepSpeed ZeRO-3 加速 / 显存拆分
accelerator = Accelerator(
mixed_precision="fp16",
deepspeed_config="./ds_config_zero3.json" # 需提前放置
)
# 开始训练
trainer.train(accelerator)