Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,453 Bytes
1f71119 6213d31 1f71119 6213d31 1f71119 6213d31 1f71119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import spaces
import time
import gradio as gr
import torch
import functools
import numpy as np
import torch.nn.functional as F
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
from transformers import CLIPProcessor, CLIPModel, AutoModel
from transformers.models.clip.modeling_clip import _get_vector_norm
from my_utils.group_inference import run_group_inference
from my_utils.default_values import apply_defaults
import argparse
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
# pipe.enable_model_cpu_offload()
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda")
# Get default args for flux-schnell
default_args = argparse.Namespace(
model_name="flux-kontext",
prompt=None,
starting_candidates=None,
output_group_size=None,
pruning_ratio=None,
lambda_score=None,
seed=None,
unary_term="clip_text_img",
binary_term="diversity_dino",
guidance_scale=None,
num_inference_steps=None,
height=512,
width=512,
)
default_args = apply_defaults(default_args)
# Scoring functions
@torch.no_grad()
def unary_clip_text_img_score(l_images, target_caption, device="cuda"):
"""Compute CLIP text-image similarity scores."""
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp()
return output.view(-1).cpu().numpy()
@torch.no_grad()
def binary_dino_diversity_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using DINO."""
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu()
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_dino_cls_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using DINO CLS tokens."""
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu()
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_clip_diversity_score(l_images, device="cuda"):
"""Compute pairwise diversity scores using CLIP."""
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
b_images = b_images * 0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
vision_outputs = m_clip.vision_model(
pixel_values=b_images,
output_attentions=False,
output_hidden_states=False,
interpolate_pos_encoding=False,
return_dict=True
)
image_embeds = m_clip.visual_projection(vision_outputs[1])
image_embeds = image_embeds / _get_vector_norm(image_embeds)
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = image_embeds[i]
for j in range(i+1, N):
f2 = image_embeds[j]
cos_sim = (1 - torch.dot(f1, f2)).item()
score_matrix[i, j] = cos_sim
return score_matrix
def get_score_functions(unary_term, binary_term, prompt):
"""Get the appropriate scoring functions based on selected terms."""
# Unary score function (always CLIP for flux-schnell) - bind the prompt
unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda")
# Binary score function
if binary_term == "diversity_dino":
binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda")
elif binary_term == "dino_cls_pairwise":
binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda")
elif binary_term == "diversity_clip":
binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda")
else:
raise ValueError(f"Invalid binary term: {binary_term}")
return unary_score_fn, binary_score_fn
@spaces.GPU(duration=200)
def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio,
lambda_score, seed, unary_term, binary_term, input_image=None, progress=gr.Progress(track_tqdm=True)):
"""Generate images using group inference with progressive pruning."""
# Get scoring functions with prompt bound to unary function
unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt)
# Create inference args
inference_args = {
"model_name": "flux-kontext",
"prompt": prompt,
"guidance_scale": default_args.guidance_scale,
"num_inference_steps": default_args.num_inference_steps,
"max_sequence_length": 256,
"height": default_args.height,
"width": default_args.width,
"unary_score_fn": unary_score_fn,
"binary_score_fn": binary_score_fn,
"output_group_size": output_group_size,
"pruning_ratio": pruning_ratio,
"lambda_score": lambda_score,
"l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)],
"starting_candidates": starting_candidates,
"skip_first_cfg": True,
}
inference_args["input_image"] = input_image
print(f"pruning ratio is: {pruning_ratio}")
# Run group inference
t_start = time.time()
output_group = run_group_inference(pipe, **inference_args)
t_end = time.time()
print(f"Time taken for group inference: {t_end - t_start} seconds")
return output_group
# Load custom CSS
css_path = os.path.join(os.path.dirname(__file__), "styles.css")
with open(css_path, "r") as f:
custom_css = f.read()
# JavaScript to force light mode
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo:
# Title and header
gr.HTML(
"""
<div class="title_left">
<h1>Scaling Group Inference for Diverse and High-Quality Generation</h1>
<div class="author-container">
<div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div>
<div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div>
<div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div>
<div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div>
<div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div>
</div>
<div class="author-container">
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div>
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div>
</div>
<br>
<div class="affiliation-container">
<div class="grid-item cmu"> <p>Carnegie Mellon University</p></div>
<div class="grid-item snap"> <p>Snap Research</p></div>
</div>
<br>
<h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2>
</div>
"""
)
with gr.Row(scale=1):
with gr.Column(scale=1.0):
prompt_placeholder = "Cat is playing outside in nature."
prompt_default = "Cat is playing outside in nature."
prompt = gr.Textbox(label="Prompt", placeholder=prompt_placeholder, lines=4, value=prompt_default)
input_image = gr.Image(label="Input Image", type="pil", sources=["upload"])
with gr.Column(scale=1.0):
with gr.Row(elem_id="starting-candidates-row"):
gr.Text("Starting Candidates:", container=False, interactive=False, scale=5)
starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1)
with gr.Row(elem_id="output-group-size-row"):
gr.Text("Output Group Size:", container=False, interactive=False, scale=5)
output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1)
with gr.Column(scale=1.0):
with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"):
with gr.Row():
gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3)
pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5)
lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5)
seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1)
with gr.Row():
gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2)
unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3)
with gr.Row():
gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2)
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
container=False, show_label=False, scale=3)
# Instructions for users
gr.HTML(
"""
<div style="margin: 15px 0; padding: 10px; background-color: #f0f0f0; border-radius: 5px; font-size: 14px;">
<strong>Tips:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Try out the (cached) examples below first! </li>
<li>Higher lambda → more diverse outputs (no added runtime cost)</li>
<li>Lower lambda → improved quality and text-adherence (no added runtime cost)</li>
<li>More starting candidates → better quality and diversity (slower runtime)</li>
</ul>
</div>
"""
)
with gr.Row(scale=1):
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row(scale=1):
output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto")
generate_btn.click(
fn=generate_images,
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
outputs=[output_gallery_group]
)
gr.Examples(
examples=[
["Cat is sitting in a cafe and working on his laptop.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is playing outside in nature.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is drinking a glass of milk.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is an astronaut landing on the moon.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
["Cat is surfing in the ocean.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
],
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
outputs=[output_gallery_group],
fn=generate_images,
cache_examples=True,
label="Examples"
)
demo.launch() |