File size: 14,453 Bytes
1f71119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6213d31
1f71119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6213d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f71119
 
 
 
 
 
 
 
 
 
 
 
6213d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f71119
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import spaces
import time
import gradio as gr
import torch
import functools
import numpy as np
import torch.nn.functional as F
from diffusers import FluxPipeline, AutoencoderTiny, FluxKontextPipeline
from transformers import CLIPProcessor, CLIPModel, AutoModel
from transformers.models.clip.modeling_clip import _get_vector_norm
from my_utils.group_inference import run_group_inference
from my_utils.default_values import apply_defaults
import argparse

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
# pipe.enable_model_cpu_offload()

m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda")

# Get default args for flux-schnell
default_args = argparse.Namespace(
    model_name="flux-kontext",
    prompt=None,
    starting_candidates=None,
    output_group_size=None,
    pruning_ratio=None,
    lambda_score=None,
    seed=None,
    unary_term="clip_text_img",
    binary_term="diversity_dino",
    guidance_scale=None,
    num_inference_steps=None,
    height=512,
    width=512,
)
default_args = apply_defaults(default_args)


# Scoring functions
@torch.no_grad()
def unary_clip_text_img_score(l_images, target_caption, device="cuda"):
    """Compute CLIP text-image similarity scores."""
    _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
    _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
    
    b_images = torch.cat(l_images, dim=0)
    b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
    b_images = b_images * 0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    
    text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
    output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp()
    return output.view(-1).cpu().numpy()


@torch.no_grad()
def binary_dino_diversity_score(l_images, device="cuda"):
    """Compute pairwise diversity scores using DINO."""
    b_images = torch.cat(l_images, dim=0)
    _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
    _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
    
    b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
    b_images = b_images * 0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu()
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = all_features[i]
        for j in range(i+1, N):
            f2 = all_features[j]
            cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
            score_matrix[i, j] = cos_sim
    return score_matrix


@torch.no_grad()
def binary_dino_cls_score(l_images, device="cuda"):
    """Compute pairwise diversity scores using DINO CLS tokens."""
    b_images = torch.cat(l_images, dim=0)
    _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
    _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
    
    b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
    b_images = b_images * 0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu()
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = all_features[i]
        for j in range(i+1, N):
            f2 = all_features[j]
            cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
            score_matrix[i, j] = cos_sim
    return score_matrix


@torch.no_grad()
def binary_clip_diversity_score(l_images, device="cuda"):
    """Compute pairwise diversity scores using CLIP."""
    _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
    _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
    
    b_images = torch.cat(l_images, dim=0)
    b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
    b_images = b_images * 0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    
    vision_outputs = m_clip.vision_model(
        pixel_values=b_images, 
        output_attentions=False, 
        output_hidden_states=False,
        interpolate_pos_encoding=False, 
        return_dict=True
    )
    image_embeds = m_clip.visual_projection(vision_outputs[1])
    image_embeds = image_embeds / _get_vector_norm(image_embeds)
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = image_embeds[i]
        for j in range(i+1, N):
            f2 = image_embeds[j]
            cos_sim = (1 - torch.dot(f1, f2)).item()
            score_matrix[i, j] = cos_sim
    return score_matrix


def get_score_functions(unary_term, binary_term, prompt):
    """Get the appropriate scoring functions based on selected terms."""
    # Unary score function (always CLIP for flux-schnell) - bind the prompt
    unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda")
    # Binary score function
    if binary_term == "diversity_dino":
        binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda")
    elif binary_term == "dino_cls_pairwise":
        binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda")
    elif binary_term == "diversity_clip":
        binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda")
    else:
        raise ValueError(f"Invalid binary term: {binary_term}")
    
    return unary_score_fn, binary_score_fn


@spaces.GPU(duration=200)
def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio, 
                   lambda_score, seed, unary_term, binary_term, input_image=None, progress=gr.Progress(track_tqdm=True)):
    """Generate images using group inference with progressive pruning."""
    
    # Get scoring functions with prompt bound to unary function
    unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt)
    
    # Create inference args
    inference_args = {
        "model_name": "flux-kontext",
        "prompt": prompt,
        "guidance_scale": default_args.guidance_scale,
        "num_inference_steps": default_args.num_inference_steps,
        "max_sequence_length": 256,
        "height": default_args.height,
        "width": default_args.width,
        "unary_score_fn": unary_score_fn,
        "binary_score_fn": binary_score_fn,
        "output_group_size": output_group_size,
        "pruning_ratio": pruning_ratio,
        "lambda_score": lambda_score,
        "l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)],
        "starting_candidates": starting_candidates,
        "skip_first_cfg": True,
    }
    inference_args["input_image"] = input_image
    print(f"pruning ratio is: {pruning_ratio}")
    # Run group inference
    t_start = time.time()
    output_group = run_group_inference(pipe, **inference_args)
    t_end = time.time()
    print(f"Time taken for group inference: {t_end - t_start} seconds")
    return output_group


# Load custom CSS
css_path = os.path.join(os.path.dirname(__file__), "styles.css")
with open(css_path, "r") as f:
    custom_css = f.read()

# JavaScript to force light mode
js_func = """
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""

# Create Gradio interface
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo:
    
    # Title and header
    gr.HTML(
        """
        <div class="title_left">
        <h1>Scaling Group Inference for Diverse and High-Quality Generation</h1>
        <div class="author-container">
            <div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div>
            <div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div>
            <div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div>
            <div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div>
            <div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div>
        </div>
        <div class="author-container">
            <div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div>
            <div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div>
        </div>
        <br>
        <div class="affiliation-container">
            <div class="grid-item cmu"> <p>Carnegie Mellon University</p></div>
            <div class="grid-item snap"> <p>Snap Research</p></div>
        </div>
        
        <br>
        <h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2>
        </div>
        """
    )

    with gr.Row(scale=1):
        with gr.Column(scale=1.0):
            prompt_placeholder = "Cat is playing outside in nature."
            prompt_default = "Cat is playing outside in nature."
            prompt = gr.Textbox(label="Prompt", placeholder=prompt_placeholder, lines=4, value=prompt_default)
            input_image = gr.Image(label="Input Image", type="pil", sources=["upload"])
        
        with gr.Column(scale=1.0):
            with gr.Row(elem_id="starting-candidates-row"):
                gr.Text("Starting Candidates:", container=False, interactive=False, scale=5)
                starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1)
            
            with gr.Row(elem_id="output-group-size-row"):
                gr.Text("Output Group Size:", container=False, interactive=False, scale=5)
                output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1)
        
        with gr.Column(scale=1.0):
            with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"):
                with gr.Row():
                    gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3)
                    pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1)

                with gr.Row():
                    gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5)
                    lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1)

                with gr.Row():
                    gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5)
                    seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1)
                
                with gr.Row():
                    gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2)
                    unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3)
                
                with gr.Row():
                    gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2)
                    binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term, 
                        container=False, show_label=False, scale=3)
    

    # Instructions for users
    gr.HTML(
        """
        <div style="margin: 15px 0; padding: 10px; background-color: #f0f0f0; border-radius: 5px; font-size: 14px;">
            <strong>Tips:</strong>
            <ul style="margin: 5px 0; padding-left: 20px;">
                <li>Try out the (cached) examples below first! </li>
                <li>Higher lambda → more diverse outputs (no added runtime cost)</li>
                <li>Lower lambda → improved quality and text-adherence (no added runtime cost)</li>
                <li>More starting candidates → better quality and diversity (slower runtime)</li>
            </ul>
        </div>
        """
    )
    
    with gr.Row(scale=1):
        generate_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row(scale=1):
        output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto")
     
    generate_btn.click(
        fn=generate_images,
        inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
        outputs=[output_gallery_group]
    )

    gr.Examples(
        examples=[
            ["Cat is sitting in a cafe and working on his laptop.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
            ["Cat is playing outside in nature.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
            ["Cat is drinking a glass of milk.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
            ["Cat is an astronaut landing on the moon.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
            ["Cat is surfing in the ocean.", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino", "assets/cat.png"],
        ],
        inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term, input_image],
        outputs=[output_gallery_group],
        fn=generate_images,
        cache_examples=True,
        label="Examples"
    )

demo.launch()