Spaces:
Running
on
Zero
Running
on
Zero
import os, sys, time | |
import math | |
import torch | |
import spaces | |
import numpy as np | |
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
from my_utils.solvers import gurobi_solver | |
def get_next_size(curr_size, final_size, keep_ratio): | |
"""Calculate next size for progressive pruning during denoising. | |
Args: | |
curr_size: Current number of candidates | |
final_size: Target final size | |
keep_ratio: Fraction of candidates to keep at each step | |
""" | |
if curr_size < final_size: | |
raise ValueError("Current size is less than the final size!") | |
elif curr_size == final_size: | |
return curr_size | |
else: | |
next_size = math.ceil(curr_size * keep_ratio) | |
return max(next_size, final_size) | |
def decode_latent(z, pipe, height, width): | |
"""Decode latent tensor to image using VAE decoder. | |
Args: | |
z: Latent tensor to decode | |
pipe: Diffusion pipeline with VAE | |
height: Image height | |
width: Image width | |
""" | |
z = pipe._unpack_latents(z, height, width, pipe.vae_scale_factor) | |
z = (z / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor | |
z = pipe.vae.decode(z, return_dict=False)[0].clamp(-1,1) | |
return z | |
def run_group_inference(pipe, model_name=None, prompt=None, prompt_2=None, negative_prompt=None, negative_prompt_2=None, | |
true_cfg_scale=1.0, height=None, width=None, num_inference_steps=28, sigmas=None, guidance_scale=3.5, | |
l_generator=None, max_sequence_length=512, | |
# group inference arguments | |
unary_score_fn=None, binary_score_fn=None, | |
starting_candidates=None, output_group_size=None, pruning_ratio=None, lambda_score=None, | |
# control arguments | |
control_image=None, | |
# input image for flux-kontext | |
input_image=None, | |
skip_first_cfg=True | |
): | |
"""Run group inference with progressive pruning for diverse, high-quality image generation. | |
Args: | |
pipe: Diffusion pipeline | |
model_name: Model type (flux-schnell, flux-dev, flux-depth, flux-canny, flux-kontext) | |
prompt: Text prompt for generation | |
unary_score_fn: Function to compute image quality scores | |
binary_score_fn: Function to compute pairwise diversity scores | |
starting_candidates: Initial number of noise samples | |
output_group_size: Final number of images to generate | |
pruning_ratio: Fraction to prune at each denoising step | |
lambda_score: Weight between quality and diversity terms | |
control_image: Control image for depth/canny models | |
input_image: Input image for flux-kontext editing | |
""" | |
if l_generator is None: | |
l_generator = [torch.Generator("cpu").manual_seed(42+_seed) for _seed in range(starting_candidates)] | |
# use the default height and width if not provided | |
height = height or pipe.default_sample_size * pipe.vae_scale_factor | |
width = width or pipe.default_sample_size * pipe.vae_scale_factor | |
pipe._guidance_scale = guidance_scale | |
pipe._current_timestep = None | |
pipe._interrupt = False | |
pipe._joint_attention_kwargs = {} | |
device = pipe._execution_device | |
lora_scale = None | |
has_neg_prompt = negative_prompt is not None | |
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
# 3. Encode prompts | |
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale) | |
if do_true_cfg: | |
negative_prompt_embeds, negative_pooled_prompt_embeds, _ = pipe.encode_prompt(prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale) | |
# 4. Prepare latent variables | |
if model_name in ["flux-depth", "flux-canny"]: | |
# for control models, the pipe.transformer.config.in_channels is doubled | |
num_channels_latents = pipe.transformer.config.in_channels // 8 | |
else: | |
num_channels_latents = pipe.transformer.config.in_channels // 4 | |
# Handle different model types | |
image_latents = None | |
image_ids = None | |
if model_name == "flux-kontext": | |
processed_image = pipe.image_processor.preprocess(input_image, height=height, width=width) | |
l_latents = [] | |
for _gen in l_generator: | |
latents, img_latents, latent_ids, img_ids = pipe.prepare_latents( | |
processed_image, 1, num_channels_latents, height, width, | |
prompt_embeds.dtype, device, _gen | |
) | |
l_latents.append(latents) | |
# Use the image_latents and image_ids from the first generator | |
_, image_latents, latent_image_ids, image_ids = pipe.prepare_latents( | |
processed_image, 1, num_channels_latents, height, width, | |
prompt_embeds.dtype, device, l_generator[0] | |
) | |
# Combine latent_ids with image_ids | |
if image_ids is not None: | |
latent_image_ids = torch.cat([latent_image_ids, image_ids], dim=0) | |
else: | |
# For other models (flux-schnell, flux-dev, flux-depth, flux-canny) | |
l_latents = [pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, _gen)[0] for _gen in l_generator] | |
_, latent_image_ids = pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, l_generator[0]) | |
# 4.5. Prepare control image if provided | |
control_latents = None | |
if model_name in ["flux-depth", "flux-canny"]: | |
control_image_processed = pipe.prepare_image(image=control_image, width=width, height=height, batch_size=1, num_images_per_prompt=1, device=device, dtype=pipe.vae.dtype,) | |
if control_image_processed.ndim == 4: | |
control_latents = pipe.vae.encode(control_image_processed).latents | |
control_latents = (control_latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor | |
height_control_image, width_control_image = control_latents.shape[2:] | |
control_latents = pipe._pack_latents(control_latents, 1, num_channels_latents, height_control_image, width_control_image) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
image_seq_len = latent_image_ids.shape[0] | |
mu = calculate_shift(image_seq_len, pipe.scheduler.config.get("base_image_seq_len", 256), pipe.scheduler.config.get("max_image_seq_len", 4096), pipe.scheduler.config.get("base_shift", 0.5), pipe.scheduler.config.get("max_shift", 1.15)) | |
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0) | |
pipe._num_timesteps = len(timesteps) | |
_dtype = l_latents[0].dtype | |
# handle guidance | |
if pipe.transformer.config.guidance_embeds: | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(1) | |
else: | |
guidance = None | |
guidance_1 = torch.full([1], 1.0, device=device, dtype=torch.float32).expand(1) | |
# 6. Denoising loop | |
with pipe.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if pipe.interrupt: | |
continue | |
if guidance is not None and skip_first_cfg and i == 0: | |
curr_guidance = guidance_1 | |
else: | |
curr_guidance = guidance | |
pipe._current_timestep = t | |
timestep = t.expand(1).to(_dtype) | |
# ipdb.set_trace() | |
next_latents = [] | |
x0_preds = [] | |
# do 1 denoising step | |
for _latent in l_latents: | |
# prepare input for transformer based on model type | |
if model_name in ["flux-depth", "flux-canny"]: | |
# Control models: concatenate control latents along dim=2 | |
latent_model_input = torch.cat([_latent, control_latents], dim=2) | |
elif model_name == "flux-kontext": | |
# Kontext model: concatenate image latents along dim=1 | |
latent_model_input = torch.cat([_latent, image_latents], dim=1) | |
else: | |
# Standard models (flux-schnell, flux-dev): use latents as is | |
latent_model_input = _latent | |
noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0] | |
# For flux-kontext, we need to slice the noise_pred to match the latents size | |
if model_name == "flux-kontext": | |
noise_pred = noise_pred[:, : _latent.size(1)] | |
if do_true_cfg: | |
neg_noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0] | |
if model_name == "flux-kontext": | |
neg_noise_pred = neg_noise_pred[:, : _latent.size(1)] | |
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
# compute the previous noisy sample x_t -> x_t-1 | |
_latent = pipe.scheduler.step(noise_pred, t, _latent, return_dict=False)[0] | |
# the scheduler is not state-less, it maintains a step index that is incremented by one after each step, | |
# so we need to decrease it here | |
if hasattr(pipe.scheduler, "_step_index"): | |
pipe.scheduler._step_index -= 1 | |
if type(pipe.scheduler) == FlowMatchEulerDiscreteScheduler: | |
dt = 0.0 - pipe.scheduler.sigmas[i] | |
x0_pred = _latent + dt * noise_pred | |
else: | |
raise NotImplementedError("Only Flow Scheduler is supported for now! For other schedulers, you need to manually implement the x0 prediction step.") | |
x0_preds.append(x0_pred) | |
next_latents.append(_latent) | |
if hasattr(pipe.scheduler, "_step_index"): | |
pipe.scheduler._step_index += 1 | |
# if the size of next_latents > output_group_size, prune the latents | |
if len(next_latents) > output_group_size: | |
next_size = get_next_size(len(next_latents), output_group_size, 1 - pruning_ratio) | |
print(f"Pruning from {len(next_latents)} to {next_size}") | |
# decode the latents to pixels with tiny-vae | |
l_x0_decoded = [decode_latent(_latent, pipe, height, width) for _latent in x0_preds] | |
# compute the unary and binary scores | |
l_unary_scores = unary_score_fn(l_x0_decoded, target_caption=prompt) | |
M_binary_scores = binary_score_fn(l_x0_decoded) # upper triangular matrix | |
# run with Quadratic Integer Programming sover | |
t_start = time.time() | |
selected_indices = gurobi_solver(l_unary_scores, M_binary_scores, next_size, lam=lambda_score) | |
t_end = time.time() | |
print(f"Time taken for QIP: {t_end - t_start} seconds") | |
l_latents = [next_latents[_i] for _i in selected_indices] | |
else: | |
l_latents = next_latents | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): | |
progress_bar.update() | |
pipe._current_timestep = None | |
l_images = [pipe._unpack_latents(_latent, height, width, pipe.vae_scale_factor) for _latent in l_latents] | |
l_images = [(latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor for latents in l_images] | |
l_images = [pipe.vae.decode(_image, return_dict=False)[0] for _image in l_images] | |
l_images_tensor = [image.clamp(-1, 1) for image in l_images] # Keep tensor version for scoring | |
l_images = [pipe.image_processor.postprocess(image, output_type="pil")[0] for image in l_images] | |
# Compute and print final scores | |
print(f"\n=== Final Scores for {len(l_images)} generated images ===") | |
# Compute unary scores | |
final_unary_scores = unary_score_fn(l_images_tensor, target_caption=prompt) | |
print(f"Unary scores (quality): {final_unary_scores}") | |
print(f"Mean unary score: {np.mean(final_unary_scores):.4f}") | |
# Compute binary scores | |
final_binary_scores = binary_score_fn(l_images_tensor) | |
print(f"Binary score matrix (diversity):") | |
print(final_binary_scores) | |
print("=" * 50) | |
pipe.maybe_free_model_hooks() | |
return l_images | |