gaparmar
adding utils:
6213d31
import os, sys, time
import math
import torch
import spaces
import numpy as np
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
from my_utils.solvers import gurobi_solver
def get_next_size(curr_size, final_size, keep_ratio):
"""Calculate next size for progressive pruning during denoising.
Args:
curr_size: Current number of candidates
final_size: Target final size
keep_ratio: Fraction of candidates to keep at each step
"""
if curr_size < final_size:
raise ValueError("Current size is less than the final size!")
elif curr_size == final_size:
return curr_size
else:
next_size = math.ceil(curr_size * keep_ratio)
return max(next_size, final_size)
@torch.no_grad()
def decode_latent(z, pipe, height, width):
"""Decode latent tensor to image using VAE decoder.
Args:
z: Latent tensor to decode
pipe: Diffusion pipeline with VAE
height: Image height
width: Image width
"""
z = pipe._unpack_latents(z, height, width, pipe.vae_scale_factor)
z = (z / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
z = pipe.vae.decode(z, return_dict=False)[0].clamp(-1,1)
return z
@torch.no_grad()
@spaces.GPU(duration=300)
def run_group_inference(pipe, model_name=None, prompt=None, prompt_2=None, negative_prompt=None, negative_prompt_2=None,
true_cfg_scale=1.0, height=None, width=None, num_inference_steps=28, sigmas=None, guidance_scale=3.5,
l_generator=None, max_sequence_length=512,
# group inference arguments
unary_score_fn=None, binary_score_fn=None,
starting_candidates=None, output_group_size=None, pruning_ratio=None, lambda_score=None,
# control arguments
control_image=None,
# input image for flux-kontext
input_image=None,
skip_first_cfg=True
):
"""Run group inference with progressive pruning for diverse, high-quality image generation.
Args:
pipe: Diffusion pipeline
model_name: Model type (flux-schnell, flux-dev, flux-depth, flux-canny, flux-kontext)
prompt: Text prompt for generation
unary_score_fn: Function to compute image quality scores
binary_score_fn: Function to compute pairwise diversity scores
starting_candidates: Initial number of noise samples
output_group_size: Final number of images to generate
pruning_ratio: Fraction to prune at each denoising step
lambda_score: Weight between quality and diversity terms
control_image: Control image for depth/canny models
input_image: Input image for flux-kontext editing
"""
if l_generator is None:
l_generator = [torch.Generator("cpu").manual_seed(42+_seed) for _seed in range(starting_candidates)]
# use the default height and width if not provided
height = height or pipe.default_sample_size * pipe.vae_scale_factor
width = width or pipe.default_sample_size * pipe.vae_scale_factor
pipe._guidance_scale = guidance_scale
pipe._current_timestep = None
pipe._interrupt = False
pipe._joint_attention_kwargs = {}
device = pipe._execution_device
lora_scale = None
has_neg_prompt = negative_prompt is not None
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
# 3. Encode prompts
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
if do_true_cfg:
negative_prompt_embeds, negative_pooled_prompt_embeds, _ = pipe.encode_prompt(prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
# 4. Prepare latent variables
if model_name in ["flux-depth", "flux-canny"]:
# for control models, the pipe.transformer.config.in_channels is doubled
num_channels_latents = pipe.transformer.config.in_channels // 8
else:
num_channels_latents = pipe.transformer.config.in_channels // 4
# Handle different model types
image_latents = None
image_ids = None
if model_name == "flux-kontext":
processed_image = pipe.image_processor.preprocess(input_image, height=height, width=width)
l_latents = []
for _gen in l_generator:
latents, img_latents, latent_ids, img_ids = pipe.prepare_latents(
processed_image, 1, num_channels_latents, height, width,
prompt_embeds.dtype, device, _gen
)
l_latents.append(latents)
# Use the image_latents and image_ids from the first generator
_, image_latents, latent_image_ids, image_ids = pipe.prepare_latents(
processed_image, 1, num_channels_latents, height, width,
prompt_embeds.dtype, device, l_generator[0]
)
# Combine latent_ids with image_ids
if image_ids is not None:
latent_image_ids = torch.cat([latent_image_ids, image_ids], dim=0)
else:
# For other models (flux-schnell, flux-dev, flux-depth, flux-canny)
l_latents = [pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, _gen)[0] for _gen in l_generator]
_, latent_image_ids = pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, l_generator[0])
# 4.5. Prepare control image if provided
control_latents = None
if model_name in ["flux-depth", "flux-canny"]:
control_image_processed = pipe.prepare_image(image=control_image, width=width, height=height, batch_size=1, num_images_per_prompt=1, device=device, dtype=pipe.vae.dtype,)
if control_image_processed.ndim == 4:
control_latents = pipe.vae.encode(control_image_processed).latents
control_latents = (control_latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
height_control_image, width_control_image = control_latents.shape[2:]
control_latents = pipe._pack_latents(control_latents, 1, num_channels_latents, height_control_image, width_control_image)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latent_image_ids.shape[0]
mu = calculate_shift(image_seq_len, pipe.scheduler.config.get("base_image_seq_len", 256), pipe.scheduler.config.get("max_image_seq_len", 4096), pipe.scheduler.config.get("base_shift", 0.5), pipe.scheduler.config.get("max_shift", 1.15))
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu)
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
pipe._num_timesteps = len(timesteps)
_dtype = l_latents[0].dtype
# handle guidance
if pipe.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(1)
else:
guidance = None
guidance_1 = torch.full([1], 1.0, device=device, dtype=torch.float32).expand(1)
# 6. Denoising loop
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if pipe.interrupt:
continue
if guidance is not None and skip_first_cfg and i == 0:
curr_guidance = guidance_1
else:
curr_guidance = guidance
pipe._current_timestep = t
timestep = t.expand(1).to(_dtype)
# ipdb.set_trace()
next_latents = []
x0_preds = []
# do 1 denoising step
for _latent in l_latents:
# prepare input for transformer based on model type
if model_name in ["flux-depth", "flux-canny"]:
# Control models: concatenate control latents along dim=2
latent_model_input = torch.cat([_latent, control_latents], dim=2)
elif model_name == "flux-kontext":
# Kontext model: concatenate image latents along dim=1
latent_model_input = torch.cat([_latent, image_latents], dim=1)
else:
# Standard models (flux-schnell, flux-dev): use latents as is
latent_model_input = _latent
noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
# For flux-kontext, we need to slice the noise_pred to match the latents size
if model_name == "flux-kontext":
noise_pred = noise_pred[:, : _latent.size(1)]
if do_true_cfg:
neg_noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
if model_name == "flux-kontext":
neg_noise_pred = neg_noise_pred[:, : _latent.size(1)]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
_latent = pipe.scheduler.step(noise_pred, t, _latent, return_dict=False)[0]
# the scheduler is not state-less, it maintains a step index that is incremented by one after each step,
# so we need to decrease it here
if hasattr(pipe.scheduler, "_step_index"):
pipe.scheduler._step_index -= 1
if type(pipe.scheduler) == FlowMatchEulerDiscreteScheduler:
dt = 0.0 - pipe.scheduler.sigmas[i]
x0_pred = _latent + dt * noise_pred
else:
raise NotImplementedError("Only Flow Scheduler is supported for now! For other schedulers, you need to manually implement the x0 prediction step.")
x0_preds.append(x0_pred)
next_latents.append(_latent)
if hasattr(pipe.scheduler, "_step_index"):
pipe.scheduler._step_index += 1
# if the size of next_latents > output_group_size, prune the latents
if len(next_latents) > output_group_size:
next_size = get_next_size(len(next_latents), output_group_size, 1 - pruning_ratio)
print(f"Pruning from {len(next_latents)} to {next_size}")
# decode the latents to pixels with tiny-vae
l_x0_decoded = [decode_latent(_latent, pipe, height, width) for _latent in x0_preds]
# compute the unary and binary scores
l_unary_scores = unary_score_fn(l_x0_decoded, target_caption=prompt)
M_binary_scores = binary_score_fn(l_x0_decoded) # upper triangular matrix
# run with Quadratic Integer Programming sover
t_start = time.time()
selected_indices = gurobi_solver(l_unary_scores, M_binary_scores, next_size, lam=lambda_score)
t_end = time.time()
print(f"Time taken for QIP: {t_end - t_start} seconds")
l_latents = [next_latents[_i] for _i in selected_indices]
else:
l_latents = next_latents
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
progress_bar.update()
pipe._current_timestep = None
l_images = [pipe._unpack_latents(_latent, height, width, pipe.vae_scale_factor) for _latent in l_latents]
l_images = [(latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor for latents in l_images]
l_images = [pipe.vae.decode(_image, return_dict=False)[0] for _image in l_images]
l_images_tensor = [image.clamp(-1, 1) for image in l_images] # Keep tensor version for scoring
l_images = [pipe.image_processor.postprocess(image, output_type="pil")[0] for image in l_images]
# Compute and print final scores
print(f"\n=== Final Scores for {len(l_images)} generated images ===")
# Compute unary scores
final_unary_scores = unary_score_fn(l_images_tensor, target_caption=prompt)
print(f"Unary scores (quality): {final_unary_scores}")
print(f"Mean unary score: {np.mean(final_unary_scores):.4f}")
# Compute binary scores
final_binary_scores = binary_score_fn(l_images_tensor)
print(f"Binary score matrix (diversity):")
print(final_binary_scores)
print("=" * 50)
pipe.maybe_free_model_hooks()
return l_images